
CHAPTER 2

STOCHASTIC PROCESSES AND TIME SERIES
MODELLING

[This chapter is based on the lectures of Dr. K.K. Jose, Department of Statistics,

St. Thomas College, Pala, M.G. University, Kottayam.]

2.0. Introduction

In this Chapter we discuss some elementary theory of Stochastic Processes
and Time Series Modelling. Stochastic processes are introduced in Section 2.1.
Some modern concepts in distribution theory which are of frequent use in this
chapter are discussed Section 2.2. Section 2.3 deals with stationary time se-
ries models. In Section 2.4,we consider a structural relationship and some new
autoregressive models. Section 2.5 deals with tailed processes. In section 2.6,
semi-Weibull time series models with minification structure are discussed.

2.1. Stochastic Processes

The theory of stochastic processes is generally regarded asthe dynamic part
of Probability Theory, in which one studies a collection of random variables
indexed by a parameter. One is observing a stochastic process whenever one ex-
amines a system developing in time in a manner controlled by probabilistic laws.
In other words, a Stochastic Process can be regarded as an empirical abstraction
of a phenomenon developing in nature according to some probabilistic rules.

If a scientist is to take account of the probabilistic natureof the phenome-
non with which he is dealing, he should undoubtedly make use of the theory of
stochastic processes. The scientist making measurements in his laboratory, the
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94 2. STOCHASTIC PROCESSES AND TIME SERIES MODELLING

meteorologist attempting to forecast weather, the controlsystems engineer de-
signing a servomechanism, the electrical engineer designing a communication
system, the hardware engineer developing a computer network, the economist
studying price fluctuations and business cycles, the seismologist studing earth-
quake vibrations, the neurosurgeon studying brainwave records, the cardiologist
studying the electro cardiogram etc. are encountering problems to which the
theory of stochastic processes can be applied. Financial modelling and insur-
ance mathematics are emerging areas where the theory of stochastic processes is
widely used.

Examples of stochastic processes are provided by the generation sizes of pop-
ulations such as a bacterial colony, life length of items under different renewals,
service times in a queuing system, waiting times in front of aservice counter,
displacement of a particle executing Brownian motion, number of events during
a particular time interval, number of deaths in a hospital ondifferent days, volt-
age in an electrical system during different time instants, maximum temperature
in a particular place on different days, deviation of an artificial satellite from its
stipulated path at each instant of time after its launch, thequantity purchased of
a particular inventory on different days etc. Suppose that a scientist is observing
the trajectory of a satellite after its launch. At random time intervals, the scientist
is observing whether it is deviating from the designed path or not and also the
magnitude of the deviation.

X(t,w)

 t

Figure 2.1
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Let X(t, w) denote the altitude of the satellite from sea-level at timet wherew
is the outcome associated with the random experiment. Here the random experi-
ment is noting the weather conditions with regard to temperature, pressure, wind
velocity, humidity etc. These outcomes may vary continuously just like that of
a random experiment. Hence{X(t, w); t ∈ T;w ∈ Ω} gives rise to a stochastic
process.

Thus a stochastic process is a family of random variables indexed by a pa-
rametert, taking values from a setT called the index set or parameter space. It
may be denoted by{X(t, w); t ∈ T, w ∈ Ω}. A more precise definition may be
given as follows.

Definition 2.1.1. A stochastic process is a family of indexed random vari-
ables{X(t, w); t ∈ T;w ∈ Ω} defined on a probability space (Ω, β,P) whereT is
an arbitrary set.

There are many ways of visualizing a stochastic process.

(i) For each choice oft ∈ T,X(t, w) is a random variable.

(ii) For each choice ofω ∈ Ω,X(t, w) is a function oft.

(iii) For each choice ofw andt,X(t, w) is a number.

(iv) In general it is an ensemble (family) of functionsX(t, w) wheret andw can
take different possible values.

t

X(t,w)
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Figure 2.2

Hereafter we shall use the notationX(t) to represent a stochastic process,
omitting w, as in the case of random variables. It is convention to useXn and
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X(t) according as the indexing parameter is discrete or continuous.

The values assumed by the r.v. (random variable)X(t) are called states and
the set of all possible values ofX(t), is called the state space of the process and is
denoted byS. The state space can be discrete or continuous. WhenS is discrete,
by a proper labeling, we can take the state-space as the set ofnatural numbers
namelyN = {1, 2, · · · }. It may be finite or infinite.

The main elements distinguishing stochastic processes arethe nature of the
state spaceS and parameter spaceT, and the dependence relations among the
random variablesX(t). Accordingly there are four types of processes.

Type 1: Discrete parameter discrete processes

In this case bothS andT are discrete. Examples are provided by the number
of customers reported in a bank counter on thenth day, thenth generation size of
a population, the number of births in a hospital on thenth day etc. There may
be multidimensional processes also. For example consider the process (Xn,Yn)
whereXn andYn are the number of births and deaths in a municipality on thenth

day.

Type 2: Continuous parameter discrete processes

In this caseT is continuous andS is discrete. Examples constitute the num-
ber of persons in a queue at timet, the number of telephone calls during (0, t),
the number of vehicles passing through a specific junction during (0, t) etc.

Type 3: Discrete parameter continuous processes

In this caseT is discrete andS is continuous. Examples are provided by the
renewal time for thenth renewal, life length of thenth renewed bulb, service time
for thenth customer, waiting time on thenth day to get transport, the maximum
temperature in a city on thenth day etc.

Type 4: Continuous parameter continuous processes

In this case bothT andS are continuous. Examples are constituted by the
voltage in an electrical system at timet, the blood pressure of a patient at time
t, the ECG level of a patient at timet, the displacement of a particle undergoing
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Brownian motion at timet, the speed of a vehicle at timet, the altitude of a satel-
lite at timet, etc.

For more details see Karlin and Taylor (2002), Papoulis (2000), Medhi (2004),
Medhi (2006). Feller (1996) gives a good account of infinite divisible distribu-
tions. Ross (2002) gives a good description of stochastic processes and their
applications. Medhi (2004) gives a good introduction to thetheory and applica-
tion of stochastic processes.

Consider a computer system with jobs arriving at random points in time,
queuing for service, and departing from the system after service completion. Let
Nk be the number of jobs in the system at the time of departure of thekth customer
(after service completion). The stochastic process{Nk; k = 1, 2, · · · } is a discrete-
parameter, discrete-state process. A realization of this process is shown in figure
2.3
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Figure 2.3

Next letX(t) be the number of jobs in the system at timet. Then{X(t); t ∈ T}
is a continuous parameter discrete-state process. A realization is given in figure
2.4.
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Let Wk be the time that thekth customer has to wait in the system before
receiving service. Then{Wk; k ∈ T} is a discrete-parameter, continuous-state
process, see figure 2.5
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Finally, letY(t) be the cumulative service requirement of all jobs in the sys-
tem at timet. Then{Y(t)} is a continuous parameter continuous-state proces, see
figure 2.6.

Figure 2.6

2.1.1. Classical types of stochastic processes

We now describe some of the classical types of stochastic processes charac-
terized by different dependence relationships amongX(t).

2.1.2. Processes with stationary independent increments

Consider a stochastic process{X(t); t ∈ T} whereT = [0,∞). Then the
process{X(t)} is called a process with independent increments if the random
variablesXt1 − Xt0,Xt2 − Xt1, · · · ,Xtn − Xtn−1 are independent for all choices of
t0, t1, · · · , tn such thatt0 < t1 < · · · < tn.

If the distribution of the incrementsX(ti + h) − X(ti) depends only onh, the
length of the interval and not on the particular timeti, then the process is said to
have stationary increments. Hence for a process with stationary increments, the
distributions of the incrementsX(t0+h)−X(t0),X(t1+h)−X(t1),X(t2+h)−X(t2), · · ·
etc are the same and depend only onh, irrespective of the time pointst0, t1, · · ·

If a process{X(t)} has both independent and stationary increments, then it is
called a process with stationary independent increments.
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Result : If a process{Xt; t ∈ T} has stationary independent increments and has
finite mean, thenE(Xt) = m0 +m1t wherem0 = E(X0) andm1 = E(X1) −m0,E
denoting the expected value.

2.1.3. Stationary processes

A stochastic process{Xt} is said to be stationary in the strict sense (SSS) if the
joint distribution function of the families of the random variables [Xt1+h, · · ·Xtn+h]
and [Xt1,Xt2, · · · ,Xtn] are the same for allh > 0 and arbitrary selectionst1, t2, · · · , tn
from T. This condition asserts that the process is in probabilistic equilibrium and
that the particular times at which one examines the process are of no relevance.
In particular the distribution ofXt is the same for eacht.

Thus stationarity of a process implies that the probabilistic structure of the
process is invariant under translation of the time axis. Many processes encoun-
tered in practice exhibit such a characteristic. So, stationary processes are ap-
propriate models for describing many phenomena that occur in communication
theory, astronomy, biology, economics etc.

However strict sense stationarity is seldom observed in practice. Moreover,
many important questions relating to a stochastic process can be adequately an-
swered in terms of the first two moments of the process. Therefore we relax the
condition of strict sense stationarity to describe weak sense stationarity (WSS),
also known as wide sense stationarity.

A Stochastic process{Xt} is said to be wide sense stationary if its first two
moments (mean function and variance function) are finite andindependent oft
and the covariance function Cov(Xt,Xt+s) is a function only ofs, the time differ-
ence, for allt. Such processes are also known as covariance stationary or second
order stationary processes. A process, which is not stationary, in any sense, is
said to be evolutionary.

2.1.4. Gaussian processes and stationarity

If a process{Xt} is such that the joint distribution of (Xt1,Xt2,Xtn) for all
t1, t2, · · · , tn is multivariate normal, then{Xt} is called a Gaussian (normal) pro-
cess. For a Gaussian process weak sense stationarity and strict sense stationarity
are identical. This follows from the fact that a multivariate normal distribution is
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completely determined by its mean vector and variance-covariance matrix. Here
we need only mean, variance and covariance functions. In other words, if a
Gaussian process{Xt} is covariance stationary, then it is strictly stationary and
vice versa.

Example 2.1.1. Let {Xn; n ≥ 1} be uncorrelated random variables with mean 0 and
variance 1. Then

Cov(Xn,Xm) =






0 if n , m

1 if n = m
.

Hence Cov(Xn,Xm) is a function ofn−m and so the process is covariance stationary. If
Xn are identically distributed also, then the process is strictly stationary.

Example 2.1.2. Consider the Poisson process{X(t)} where

P[X(t) = n] = e−λt (λt)n

n!
; n = 0, 1, · · · .

Clearly,

E[X(t)] = λt

Var[X(t)] = λt which depends ont

Therefore the process is not stationary. It is evolutionary.

Example 2.1.3. Consider the process{X(t)} whereX(t) = A1+ A2t whereA1,A2 are
independent r.v.’s withE(Ai) = ai ,Var(Ai) = σ2

i , i = 1, 2. Obviously

E[X(t)] = a1 + a2t

Var[X(t)] = σ2
1 + σ

2
2t2

Cov[X(s), [X(t)] = σ2
1 + stσ2

2.

These are functions oft and hence the process is evolutionary.

Example 2.1.4. Consider the process{X(t)} whereX(t) = Acoswt + Bsinwt, where
A andB are uncorrelated r.v.’s with mean 0 and variance 1 andw is a positive constant.

In this caseE[X(t)] = 0 and Var[X(t)]= 1, Cov[X(t),X(t + h)] = cos(hw). Hence
the above process is covariance stationary. This process iscalled a sinusoidal process.
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Example 2.1.5. Consider the process{X(t)} such that

P[X(t) = n] =






(at)n−1

(1+at)n+1 ; n = 1, 2, · · ·
(at)

(1+at) ; n = 0.

Obviously

E[X(t)] =
∞∑

n=0

nP[X(t) = n]

=
1

(1+ at)2

∞∑

n=1

n
(at)n−1

(1+ at)
= 1

E[X2(t)] =
∞∑

n=1

n2 (at)n−1

(1+ at)n−1

=
at

(1+ at)3






∞∑

n=2

n(n− 1)
(at)n−2

(1+ at)






+

∞∑

n=1

n
(at)n−1

(1+ at)n+1

= 2at + 1,

which is a function oft. Hence the process is not stationary. It is an evolutionary process.

Example 2.1.6. Consider the Bernoulli process described below.

Consider a sequence of independent Bernoulli trials with outcomes as success and
failure. Let

Xn =






1 if the outcome is a success

0 otherwise.

Then the process{Xn; n ≥ 1} has states 0 and 1 and the process is called a Bernoulli
process. Let us define{Yn} by Yn = 0 for n = 0 andYn = X1 + · · · + Xn, n ≥ 1. Then
the process{Yn; n ≥ 0} has the set of non-negative integers as the state space. TheYni is
binomially distributed withP[Yn = k] = nCkpk(1 − p)n−k; k = 0, 1, 2, · · · n; wherep is
the probability of success in a trial.

Example 2.1.7. (The random telegraph signal process )
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Let {N(t), t ≥ 0} denote a Poisson process, and letX0 be independent of this process,
and be such thatP(X0 = 1) = P(X0 = −1) = 1

2. DefineX(t) = X0(−1)N(t). Then{X(t); t ≥
0} is called a random telegraph signal process. In this caseP[N(t) = k] = e−λt (λt)k

k! for
k = 1, 2, · · · . Clearly

E[X(t)] = E[X0(−1)N(t)]

= E[X0]E[(−1)N(t)] = 0

Cov[X(t),X(t + s)] = E[X(t)X(t + s)]

= E[X2
0(−1)N(t)+N(t)+s]

= E[X2
0].E[(−1)2N(t)+N(t)+s+N(t)−N(t) ]

= 1E[(−1)2N(t)(−1)N(t+s)−N(t)]

= E[(−1)2N(t)]E[(−1)N(t+s)]

= 1E[(−1)N(s)]

=

∞∑

k=0

(−1)k
eλs(λs)k

k!

= e−2λs; s≥ 0.

Also

Var[X(t)] = 1 < ∞.

Hence the above process is covariance stationary.

For an application of the above random telegraph signal, consider a particle moving
at a constant unit velocity along a straight line and supposethat collisions involving this
particle occur at Poisson rateλ. Also suppose that each time the particle suffers from a
collision, it reverses direction. IfX0 represents the initial velocity of the particle, then
its velocity at timet is given byX(t) = X0(−1)N(t). If we takeD(t) =

∫ t

0 x(s)ds, thenD(t)
represents the displacement of the particle during (0, t). It can be shown that{D(t); t ≥ 0}
is also a weakly stationary process.

Example 2.1.8. Consider an Autoregressive Process{Xn} whereX0 = Z0 andXn =

ρXn−1 + Zn; n ≥ 1, |ρ| < 1 whereZ0,Z1,Z2, · · · are uncorrelated random variables with
E(Zn) = 0;n ≥ 0 and
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Var(Zn) =






σ2; n ≥ 1
σ2

1−ρ2 ; n = 0.

Then

Xn = ρXn−1 + Zn

= ρ(ρXn−2 + Zn−1 + Zn

= ρ2Xn−2 + ρZn−1 + Zn

=

n∑

i=0

ρn−iZi .

Therefore

E(Xn) = 0

Cov[Xn,Xn+m] = Cov[
n∑

i=0

ρn−1Zi ,

n+m∑

i=0

ρn+m−iZi

=

n∑

i=0

ρn−1ρn+m−iCov(Zi ,Zi)

= σ2ρ2n+m





1
1+ ρ2

+

n∑

i=1

ρ−2i





=
σ2ρm

1− ρ2
.

Therefore this process is also covariance stationary.

Now we consider a special type of Gaussian Process, which is stationary in both
senses and has a wide range of applications.

2.1.5. Brownian processes

We consider a symmetric random walk in which in each time unitthere is
chance for one unit step forward or backward. Now suppose that we speed up this
process by taking smaller and smaller steps in smaller and smaller time intervals.
In the limit we obtain the Brownian motion process. It is alsoknown as the
Wiener process, after Wiener who developed this concept in aseries of papers
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from 1918 onwards. Actually it originated in Physics, as thenotion associated
with the random movements of a small particle immersed in a liquid or gas. This
was first discovered by the British botanist Robert Brown. The process can be
more precisely developed as follows:

Suppose that, in the random walk, in each time interval of duration∆t we
take a step of size∆x either to the left or to the right with equal probabilities. If
we letX(t) denote the position at timet, then

X(t) = ∆x [X1 + · · · + X( t
∆t )

]

where

Xn =






+1 if the i th step is to the right

−1 if it is to the left

and t
∆t is the integer part oft

∆t . We assume thatX′i s are independent withP(Xi =

1) = P(Xi = −1) = 1
2. SinceE(Xi) = 0,Var(Xi) = 1 we haveE[X(t)] =

0,Var[X(t)] = (∆x)2[ t
∆t ]

Now we consider the case when∆x → 0 and∆t → 0 in such a way that
E[X(t)] = 0 and Var[X(t)] → σ2t. The resulting process{X(t)} is such thatX(t)
is normally distnbuted with meanσ and varianceσ2t, and has independent, sta-
tionary increments. This leads us to the formal definition ofa Brownian motion
process.

Definition 2.1.2. A stochastic process{X(t); t ≥ 0} is said to be a Brow-
nian motion process if (i)X(0) = 0 (ii) {X(t)} has stationary independent
increments (iii) for everyt > 0,X(t) is normally distributed with mean 0 and
varianceσ2t.

Whenσ = 1, the process is called a standard Brownian motion. Any Brow-
nian motionX(t) can be converted to a standard Brownian motion by taking
B(t) = X(t)

σ
. If {B(t)} is a standard Brownian motion andX(t) = σB(t) + µt, then

X(t) is normally distributed with meanµt and variancetσ2. Then{X(t); t ≥ 0} is
called a Brownian motion with drift coefficientµ.
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If {X(t); t ≥ 0} is a Brownian motion process with drift coefficient µ and
variance parameterσ2t, then{Y(t); t ≥ 0} whereY(t) = exp[X(t)] is a called a
geometric Brownian motion process. It is useful in modelingof stock prices over
time when the percentage changes are independent and identically distributed.

If {X(t); t ≥ 0} is a Brownian motion process then each ofX(tl),X(t2), · · · can
be expressed as a linear combination of the independent normal random vari-
ablesX(t1),X(t2)−X(t1),X(t3)−X(t2), · · ·X(tn)−X(tn−1). Hence it follows that a
Brownian motion is a Gaussian process.

Since a multivariate normal distribution is completely determined by the mar-
ginal mean values and covariance values, it follows that a standard Brownian mo-
tion could also be defined as a Gaussian process havingE[X(t)] = 0 and fors≥ t,

Cov[X(s),X(t)] = Cov[X(s),X(s) + X(t) − X(s)]

= Cov[X(s),X(s)] + Cov[X(s),X(t) − X(s)]

= Var[X(s)]

= sσ2.

Let {X(t); t ≥ 0} be a standard Brownian motion process and consider the pro-
cess values between 0 and 1 conditional onX(1) = 0. Consider the conditional
stochastic process,{X(t); 0 ≥ t ≥ 1|X(1) = 0}. Since this conditional distribution
is also multivariate normal it follows that this conditional process is a Gaussian
process. This conditional process is known as the Brownian bridge.

Brownian motion theory is a major topic in fluid dynamics and has appli-
cations in aeronautical engineering in the designing of aeroplanes, submarines,
satellites, space crafts etc. It also finds applications in financial modelling.

2.1.6. Markov chains

An elementary form of dependence between values ofXn in successive tran-
sitions, was introduced by the celebrated Russian probabilist A.A. Markov, and
is known as Markov dependence. Markov dependence is a form ofdependence
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which states thatXn+1 depends only onXn when it is known and is independent
of Xn−1,Xn−2, · · · ,X0. This implies that the future of the process depends only on
the present, irrespective of the past. This property is known as Markov property.
In probabilistic terms, the Markov property can be stated as

P[Xn+1, = in+1|X0 = i0,X1 = i1, · · · ,Xn−1 = in−1,Xn = in]

= P[Xn+1 = in+1|Xn = in]

for all statesi0, i1, · · · , in+1 and for alln. This is called Markov dependence of
the first order.

A Stochastic process{Xn} with discrete state space and discrete parameter
space is called a markov chain if for all statesi, j, i0, i1, · · · , in−1 we have

P[Xn+1 = j|X0 = i0,X1 = i1, · · · ,Xn−1 = in−1,Xn = i]

= P{Xn+1 = j|Xn = i] for all n.

The probability that the system is in statej at the end of (n+ 1) transitions given
that the system was in statei at the end ofn transitions is denoted byp(1)

i j and is
called a one-step transition probability. In general this probability depends oni, j
andn. If these probabilities are independent ofn, we say that the Markov chain is
homogeneous and has stationary transition probabilities.Here we consider only
such chains. Thus

p(1)
i j = P[Xn+1 = j|Xn = i]

In a similar manner we can considerm-step transition pribabilities denoted by
p(m)

i j where

p(m)
i j = P[Xn+m = j|Xn = i]

If the state space of a Markov chain consists of only a finite number of states, it
is called a finite Markov chain. Otherwise we call it an infinite Markov chain.

The square matirxP consting of the elementsp(1)
i j for all possible statesi and

j is called one -step transition probability matrix of the chain. Therefore

P = [p(1)
i j ].



108 2. STOCHASTIC PROCESSES AND TIME SERIES MODELLING

Similarly the square matrixP(m) consisting of the elementsp(m)
i j for all possible

values of the statesi and j is called the m-step transition matrix of the chain.
Hence

P(m)
= [p(m)

i j ].

Obviously we haveP(1)
= P and

p(m)
i j ≥ 0 and

∑

j

p(m)
i j = 1.

Now we considerp(0)
j = P[X0 = j]. It may be noted thatp(0)

j describes the

probability distribution ofX0. The vectorp(0)
= (p(0)

0 , p(0)
1 , · · · p

(0)
j · · · ) is called

the initial probability vector.
Similarly p(n)

j = P[Xn = j] gives the probability distribution ofXn. The vector

p(n)
= (p(n)

0 , p(n)
1 , · · · p

(n)
j · · · ) is called then-step absolute probability vector.

Theorem 2.1.1. A Markov chain is completely defined by its one-step tran-
sition probability matrix and the initial probability vector.

Proof 2.1.1. Consider

P[X0 = i|X1 = j,X2 = k, · · · ,Xn−1 = r,Xn = s]

= P[X0 = i] P[X1 = j|X0 = i] P[X2 = k|X0 = i,X1 = j]

· · ·P{Xn = s|X0 = i, · · · ,Xn−1 = r}
= P(X0 = i)P(X1 = j|X0 = i) P(X2 = k|X1 = j) · · ·P(Xn = s|Xn−1 = r)

= p(0)
i p(1)

i j · · · p
(1)
rs

This shows that any finite dimensional joint distribution for the chain can be
obtained in terms of the initial probabilities and one-steptransition probabilities,
and this establishes the thorem.

Theorem 2.1.2. (Chapman-Kolmogorov Equations)

The transition probabilities of Markov chains satisfy the equation
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p(m+n)
i j =

∑

k

p(m)
ik p(n)

k j where p(0)
i j =






1, i = j

0, i , j

or equivalently,

P(n)
= Pn and P(m+n)

= P(m)P(n)

(i) Computation of absolute probabilities

Consider

p(n)
j = P[Xn = j]

P(Xn = j) =
∑

i

P(Xn = j,X0 = i)

=

∑

i

P(X0 = i)P(Xn = j|X0 = i)

Therefore

p(n)
j =

∑

i

p(0)
i p(n)

i j

(ii) Inverse transition probabilities

Then-step inverse transition probabilities denoted byq(n)
i j is defined as

q(n)
i j = P(Xm = j|Xn+m = i)

for m≥ 0, n ≥ 0. They describe the past behaviour of the process when the
present is given. But transition probabilities describe the future behaviour
of the process when the present is given.

Now

P(Xm = j|Xn+m = i)P(Xn+m = i)

= P(Xn+m = i|Xn = j)P(Xn = j)
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Therefore

P(Xm = j|Xn+m = i) =
P(Xn+m = i|Xm = j)P(Xm = j)

P(Xn+m = i)

Hence

q(n)
j =

p(n)
i j p(m)

j

P(n+m)
i

m≥ 0

whenever the denominator is non zero.

(iii) Taboo probabilities

In this case the movement of the system to some specified states is
prohibited. For example consider

P(X2 = j,X1 , k|X0 = i) = P

(the system reaches statej at the end of 2 transitions without visiting state
k given that the system started from statei).

This is usually denoted bykP
(2)
i j . Using the Chapman-Kolmogorov equa-

tions, we have

kp(2)
i j =

∑

1,k

p(1)
il p(1)

l j

It may be noted thatkP
(2)
i j is different fromP[X2 = j|X0 = i,X1 , k]

which is equal toP[X2 = j|X1 , k].

Similarly P[X2 = j,X1 , k, l|X0 = i] may be denoted byl,kP
(2)
i j .

Obviously,

l,kP
(2)
i j =

∑

v,k,l

p(1)
iv p(1)

v j

Problems relating to taboo probabilities can be solved as shown above.
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Exercises 2.1.

2.1.1. Give two examples each of the four types of stochastic processes.

2.1.2. Define a stochastic process with stationary independent increments.

2.1.3. For a process with stationary independent increments show thatE(Xt) =
m0 +m1t wherem0 = E(X0) andm1 = E(X1) −m0.

2.1.4. What is a Poisson process ? Show that it is evolutionary.

2.1.5. Give an example of a strictly stationary process.

2.1.6. Give an example of a covariance stationary process.

2.1.7. Let {Xn} be uncorrelated r.v.’s withE(Xn) = 0,V(Xn) = 1. Show that
{Xn} is strictly stationary.

2.1.8. Consider a Poisson process{x(t)} wherep[x(t) = n] = e−λt(λt)n

n! ; n =
0, 1, · · · Find E(x(t)) and Var(x(t)). Is the process stationary ?

2.1.9. Consider a Poisson process{x(t)} as above. Letx0 be independent of
x(t) such thatp(x0 = 1) = p(x0 = −1) = 1

2. defineN(t) = x0(−1)N(t). Find
E(N(t)) and Cov(N(t),N(t + s)).

2.1.10. Define a Brownian process and show that it is an approximationof the
random walk process.

2.1.11. Obtain an expression for the covariance function of a Brownian motion
process.

2.1.12. What is geometric Brownian motion process? Discuss its uses?

2.1.13. Consider the numbers 1, 2, 3, 4, 5. We select one number out of these
at random and note it asX1. Then select a number at random from 1, 2 · · ·X1 and
denote it asX2. The process is continued. Write down the one step and two step
transition matrices of the chain{Xn}.
2.1.14. 4 white and 4 red balls are randomly distributed in two urns sothat

each urn contains 4 balls. At each step one ball is selected atrandom from each
urn and the two balls are interchanged. LetXn denote the number of white balls
in the first urn at the end of thenth interchange. Then write down the one-step
transition matrix and the initial distribution. Also find
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(i) P[X3 = 4|X1 = 4] (ii) P[X2 = 3]

(iii) P[X1 = 4, X2 = 3, X3 = 2, X4 = 1] (iv) P[X1 = 3|X3 = 4]

2.1.15. If Xn denotes the maximum face value observed inn tosses of a
balanced die with faces marked 1, 2, 3, 4, 5, 6 write down the state space and
parameter space of the process{Xn}. Also obtain the transition matrix.

2.2. Modern Concepts in Distribution Theory

2.2.1. Introduction

In this Section we discuss some modern concepts in distribution theory which
will be of frequent use in this chapter.

Definition 2.2.1. Infinite divisibility.
A random variablex is said to be infinitely divisible if for everyn ∈ N, there

exists independently and identically distributed random variablesy1n, y2n, . . . , ynn

such thatx
d
= y1n + y2n + · · · + ynn, where

d
= denotes equality in distributions. In

terms of distribution functions, a distribution functionF is said to be infinitely
divisible if for every positive integern, there exists a distribution functionFn

such thatF = Fn ⋆ Fn ⋆ · · · ⋆ Fn
︸                  ︷︷                  ︸

n times

, where⋆ denotes convolution.

This is equivalent to the existence of a characteristic function ϕn(t) for every
n ∈ N such thatϕ(t) = [ϕn(t)]n whereϕ(t) is the characteristic function ofx.

Infinitely divisible distributions occur in various contexts in the modelling of
many real phenomena. For instance when modelling the amountof rain x that
falls in a period of lengthT, one can dividex into more general independent
parts from the same family. That is,

x
d
= xt1 + xt2−t1 + · · · + xT−tn−1.

Similarly, the amount of moneyx paid by an insurance company during a year
must be expressible as the sum of the corresponding amountsx1, x2, . . . , x52 in
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each week, That is,
x

d
= x1 + x2 + · · · + x52.

A large number of distributions such as normal, exponential, Weibull, gamma,
Cauchy, Laplace, logistic, lognormal, Pareto, geometric,Poisson, etc., are infin-
itely divisible. Various properties and applications of infinitely divisible distri-
butions can be found in Laha and Rohatgi (1979) and Steutel (1979).

2.2.2. Geometric infinite divisibility

The concept of geometric infinite divisibility (g.i.d.) wasintroduced by Kle-
banovet al. (1984). A random variabley is said to be g.i.d. if for everyp ∈ (0, 1),
there exists a sequence of independently and identically distributed random vari-
ablesx(p)

1 , x(p)
2 , . . . such that

y
d
=

N(p)∑

j=1

x(p)
j (2.2.1)

and

P{N(p) = k} = p(1− p)k−1, k = 1, 2, · · ·
wherey,N(p) and x(p)

j , j = 1, 2, . . . are independent. The relation (2.2.1) is
equivalent to

ϕ(t) =
∞∑

j=1

[g(t)] j p(1− p) j−1

=
pg(t)

1− (1− p)g(t)

whereϕ(t) andg(t) are the characteristic functions ofy andx(p)
j respectively.

The class of g.i.d. distributions is a proper subclass of infinitely divisible dis-
tributions. The g.i.d. distributions play the same role in ‘geometric summation’
as infinitely divisible distributions play in the usual summation of independent
random variables. Klebanovet al. (1984) established that a distribution func-

tion F with characteristic functionϕ(t) is g.i.d. if and only if exp

{

1− 1
ϕ(t)

}

is
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infinitely divisible. Exponential and Laplace distributions are obvious examples
of g.i.d. distributions. Pillai (1990b), Mohanet al. (1993) discuss properties of
g.i.d. distributions. It may be noted that normal distribution is not geometrically
infinitely divisible.

2.2.3. Bernstein functions

A C∞–function f from (0,∞) to R is said to be completely monotone if

(−1)n
dn f
dxn
≥ 0 for all integersn ≥ 0.

A C∞–function f from (0,∞) to R is said to be a Bernstein function, iff (x) ≥
0, x > 0 and (−1)n

dn f
dxn
≤ 0 for all integersn ≥ 1. Then f is also referred to as a

function with complete monotone derivative (c.m.d).

A completely monotone function is positive, decreasing andconvex while
a Bernstein function is positive, increasing and concave (see Berg and Forst
(1975)).

Fujita (1993) established that a cumulative distribution functionG with G(0) =
0 is geometrically infinitely divisible, if and only ifG can be expressed as

G(x) =
∞∑

n=1

(−1)n+1Wn∗([0, x]), x > 0

whereWn∗(dx) is then-fold convolution measure of a unique positive measure
W(dx) such that

1
f (x)
=

∫ ∞

0
e−sxW(ds), x > 0

where f (x) is a Bernstein function, satisfying the conditions

lim
x↓0

f (x) = 0 and lim
x→∞

f (x) = ∞.

A distribution is said to have complete monotone derivativeif its distribution
function F(x) is Bernstein. Pillai and Sandhya (1990) proved that the class of
distributions having complete monotone derivative is a proper subclass of g.i.d.
distributions. This implies that all distributions with complete monotone den-
sities are geometrically infinitely divisible. It is easierto verify the complete
monotone criterion and using this approach we can establishthe geometric infi-
nite divisibility of many distributions such as Pareto, gamma and Weibull.
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The class of non-degenerate generalized gamma convolutions with densities
of the form given by

f (x) = c xβ−1
M∏

j=1

(1+ cj x)−r j , x > 0

is geometrically infinitely divisible for 0< β ≤ 1. Similarly distributions having
densities of the form

f (x) = cxβ−1 exp(−cxα); 0 < α ≤ 1

is g.i.d. for 0< β ≤ 1. Also the Bondesson family of distributions with densities
of the form

f (x) = cxβ−1
M∏

j=1




1+

Nj∑

k=1

cjkxα jk





−r j

is g.i.d. for 0≤ β ≤ 1, α jk ≤ 1 provided all parameters are strictly positive (see
Bondesson(1992)).

2.2.4. Self-decomposability

Let {xn; n ≥ 1} be a sequence of independent random variables, and let{bn}
be a sequence of positive real numbers such that

lim
n→∞

max
1≤k≤n

P{|xk| ≥ bnǫ} = 0 for everyǫ > 0 .

Let sn =
∑n

k=1 xk for n ≥ 1. Then the class of distributions which are the weak
limits of the distributions of the sumsb−1

n sn − an; n ≥ 1 wherean andbn > 0
are suitably chosen constants, is said to constitute classL. Such distributions are
called self-decomposable.

A distributionF with characteristic functionϕ(t) is called self - decompos-
able, if and only if, for everyα ∈ (0, 1), there exists a characteristic function
ϕα(t) such thatϕ(t) = ϕ(αt)ϕα(t) for t ∈ R.

Clearly, apart fromx ≡ 0, no lattice random variable can be self–decomposable.
All non-degenerate self–decomposable distributions are absolutely continuous.

A discrete analogue of self–decomposability was introduced by Steutel and
Van Harn (1979). A distribution onN0 ≡ {0, 1, 2, . . .} with probability generating
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function (p.g.f.)P(z) is called discrete self–decomposable if and only ifP(z) =
P(1− α + αz)Pα(z); |z| ≤ 1,α ∈ (0, 1) wherePα(z) is a p.g.f.

If we defineG(z) = P(1 − z), thenG(z) is called the alternate probability
generating function (a.p.g.f.). Then it follows that a distribution is discrete self–
decomposable if and only ifG(z) = G(αz)Gα(z); |z| ≤ 1, α ∈ (0, 1) whereGα(z)
is some a.p.g.f.

2.2.5. Stable distributions

A distribution functionF with characteristic functionϕ(t) is stable if for ev-
ery pair of positive real numbersb1 andb2, there exist finite constantsa andb > 0
such thatϕ(b1t)ϕ(b2t) = ϕ(bt)eiat wherei =

√
−1.

Clearly, stable distributions are in classL with the additional condition that
the random variablesxn; n ≥ 1 in Subsection 4.3.4 are identically distributed
also.F is stable if and only if its characteristic function can be expressed as

lnϕ(t) = iαt − c|t|β[1 + iγω(t, β)sgn t]

whereα, β, γ are constants withc ≥ 0, 0< β ≤ 2, |γ| ≤ 1 and

ω(t, β) =






tanπβ

2 ; β , 1
2
π

ln |t|; β = 1.

The valuec = 0 corresponds to the degenerate distribution, andβ = 2 to the
normal distribution. The caseγ = 0, β = 1 corresponds to the Cauchy law (see
Laha and Rohatgi (1979)).

2.2.6. Geometrically strictly stable distributions

A random variabley is said to be geometrically strictly stable (g.s.s.) if for
anyp ∈ (0, 1) there exists a constantc = c(p) > 0 and a sequence of independent
and identically distributed random variablesy1, y2, . . . such that

y
d
= c(p)

N(p)∑

j=1

y j

whereP{N(p) = k} = p(1 − p)k−1; k = 1, 2, . . . andy,N(p) andy j; j = 1, 2, . . .
are independent.
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If ϕ(t) is the characteristic function ofy, then it implies that

ϕ(t) =
pϕ(ct)

1− (1− p)ϕ(ct)
; p ∈ (0, 1).

Among the geometrically strictly stable distributions, the Laplace distribution
and exponential distribution possess all moments. A geometrically strictly stable
random variable is clearly geometrically infinitely divisible.

A non–degenerate random variabley is geometrically strictly stable if and
only if its characteristic function is of the form

ϕ(t) = 1
/ [

1+ λ|t|α exp
(

−i
π

2
θα sgn t

)]

where 0< α ≤ 2, λ > 0, |θ| ≤ min(1, 2/α − 1). Whenα = 2, it corresponds
to the Laplace distribution. Thus it is apparent that when ordinary summation of
random variables is replaced by geometric summation, the Laplace distribution
plays the role of the normal distribution, and exponential distribution replaces
the degenerate distribution (see Klebanovet al.(1984)).

2.2.7. Mittag-Leffler distribution

The Mittag-Leffler distribution was introduced by Pillai (1990a) and has cu-
mulative distribution function given by

Fα(x) =
∞∑

k=1

(−1)k−1xkα

Γ(1+ kα)
; 0 < α ≤ 1; x > 0.

Its Laplace transform is given byφ(t) =
1

1+ tα
; 0 < α ≤ 1; t ≥ 0; and the

distribution may be denoted by ML(α). Hereα is called the exponent. It can be
regarded as a generalization of the exponential distribution in the sense thatα = 1
corresponds to the exponential distribution. The Mittag-Leffler distribution is
geometrically infinitely divisible and belongs to classL. It is normally attracted
to the stable law with exponentα.

If u is exponential with unit mean andy is positive stable with exponentα,
thenx = u1/αy is distributed as Mittag-Leffler (α). If u is Mittag-Leffler (α) and

v is exponential andu andv are independent, thenx =
u
v

is distributed as Pareto

type III with survival functionF̄x(x) = P(x > x) =
1

1+ xα
; 0 < α ≤ 1.
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For the Mittag-Leffler distribution,E(xδ) exists for 0≤ δ < α and is given
by

E(xδ) =
Γ(1− δ/α)Γ(1+ δ/α)

Γ(1− δ)
.

A two parameter Mittag-Leffler distribution can also be defined with the

corresponding Laplace transformφ(t) =
λα

λα + tα
; 0 < α ≤ 1. It may be denoted

by ML(α, λ).

Jayakumar and Pillai (1993) considered a more general classcalled semi–
Mittag-Leffler distribution which included the Mittag-Leffler distribution as a
special case. A random variablex with positive support is said to have a semi–
Mittag-Leffler distribution if its Laplace transform is given by

φ(t) =
1

1+ η(t)

whereη(t) satisfies the functional equationη(t) = aη(bt) where 0< b < 1 andα
is the unique solution ofabα = 1. It may be denoted by SML(α). Then it follows

thatη(bt) = bαh(t) whereh(t) is a periodic function int with period
− ln b
2πα

. When

h(t) is a constant, the distribution reduces to the Mittag-Leffler distribution. The
semi–Mittag-Leffler distribution is also geometrically infinitely divisibleand
belongs to classL.

2.2.8. α–Laplace distribution

Theα–Laplace distribution has characteristic function given by ϕ(t) =
1

1+ |t|α
;

0 < α ≤ 2, −∞ < t < ∞. This is also called Linnik’s distribution. Pillai (1985)
refers to it as theα–Laplace distribution sinceα = 2 corresponds to the Laplace
distribution. It is unimodal, geometrically strictly stable and belongs to classL.
It is normally attracted to the symmetric stable law with exponentα. Also

E(|x|δ) =
2δ Γ

(

1+ δ

α

)

Γ

(

1− δ

α

)

Γ((1+ δ)/2)
√
π Γ

(

1− δ

2

)

where 0< δ < α; 0 < α ≤ 2.
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If u andv are independent random variables whereu is exponential with unit
mean andv is symmetric stable with exponentα, thenx = u1/αv is distributed as
α–Laplace. Using this result, Devroye (1990) develops an algorithm for gener-
ating random variables havingα–Laplace distribution.

Pillai (1985) introduced a larger class of distributions called semi–α–Laplace
distribution, with characteristic function given by

ϕ(t) =
1

1+ η(t)

whereη(t) satisfies the functional equationη(t) = aη(bt) for 0 < b < 1 and
a is the unique solution ofabα = 1, 0 < α ≤ 2. Hereb is called the order
andα is called the exponent of the distribution. Ifb1 andb2 are the orders of

the distribution such that
ln b1

ln b2
is irrational, thenη(t) = c|t|α, wherec is some

constant. Pillai (1985) established that, for a semi–α–Laplace distribution with
exponentα, E|x|δ exists for 0≤ δ < α. It can be shown that

ϕ(t) =
1

1+ |t|α[1 − Acos (k ln |t|)]

wherek =
2π

ln b
, 0 < b < 1 is the characteristic function of a semi–α–Laplace

distribution for suitable choice ofA andα < 1.

The semi–α–Laplace distribution is also geometrically infinitely divisible
and belongs to classL. It is useful in modelling household income data. Mo-
hanet al.(1993) refer to it as a geometrically right semi–stable law.

2.2.9. Semi–Pareto distribution

The semi–Pareto distribution was introduced by Pillai (1991). A random
variablex with positive support has semi–Pareto distributionS P(α, p) if its sur-
vival function is given byF̄x(x) = P(x > x0) = 1

1+ψ(x0) whereψ(x0) satisfies the
functional equationpψ(x) = ψ(p1/αx); 0 < p < 1, α > 0.

The above definition is analogous to that of the semi–stable law defined by
Levy (see Pillai (1971)). It can be shown thatψ(x) = xαh(x) whereh(x) is

periodic in lnx with period
−2πα
ln p

. For example ifh(x) = exp[β cos(α ln x)], then

it satisfies the above functional equation withp = exp(−2π) andψ(x) monotone



120 2. STOCHASTIC PROCESSES AND TIME SERIES MODELLING

increasing with 0< β < 1. The semi–Pareto distribution can be viewed as a more
general class which includes the Pareto type III distribution whenψ(x) = cxα,
wherec is a constant.

Exercises 2.2.

2.2.1. Examine whether the following distributions are infinitelydivisible.

(i) normal (ii) exponential (iii) Laplace (iv) Cauchy
(v) binomial (vi) Poisson (vii) Geometric (viii) negative binomial

2.2.2. Show that exponential distribution is geometric infinite divisible and
self decomposable.

2.2.3. Examine whether Cauchy distribution is self-decomposable.

2.2.4. Show that (i) Mittag-Leffler distribution is g.i.d and belongs to class L.
(ii) α-Laplace distribution is g.i.d and self-decomposable.

2.2.5. Give a distribution which is infinitely divisible but not g.i.d.

2.2.6. Show that AR(1) structurexn = axn−1 + ǫn; a ∈ (0, 1) is stationary
Markovian if and only if{xn} is self decomposable.

2.2.7. Show that geometric and negative binomial distribution arediscrete
self-decomposable.

2.2.8. Consider the symmetric stable distribution with characteristic function
ϕ(t) = e−|t|

α

. Is it self-decomposable?
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2.3. Stationary Time Series Models

2.3.1. Introduction

A time series is a realization of a stochastic process. In other words, a time
series,{xt}, is a family of real–valued random variables indexed byt ∈ Z, where
Z denotes the set of integers. More specifically, it is referred to as a discrete
parameter time series. The time series{xt} is said to be stationary if, for any
t1, t2, . . ., tn ∈ Z, anyk ∈ Z, andn = 1, 2, . . . ,

Fxt1 ,xt2 ,...,xtn
(x1, x2, . . . , xn) = Fxt1+k,xt2+k,...,xtn+k(x1, x2, . . . , xn)

whereF denotes the distribution function of the set of random variables which
appear as suffices. This is called stationarity in the strict sense.

Less stringently, we say a process{xn} is weakly stationary if the mean and
variance ofxt remain constant over time and the covariance between any two
valuesxt andxs depends only on the time difference and not on their individual
time points.

{xt} is called a Gaussian process if, for alltn; n ≥ 1 the set of random variables
{xt1, xt2, . . . , xtn} has a multivariate normal distribution.

Since a multivariate normal distribution is completely specified by its mean
vector and covariance matrix, it follows that for a Gaussianprocess weak station-
arity implies complete stationarity. But for non–Gaussianprocesses, this may not
hold.

2.3.2. Autoregressive models

The era of linear time series models began with autoregressive models first
introduced by Yule in 1927. The standard form of an autoregressive model of
orderp, denoted by AR(p), is given by

xt =

p∑

j=1

a j xt− j + ǫt; t = 0,±1,±2, . . .

where{ǫt} are independent and identically distributed random variables called
innovations anda j , p are fixed parameters, withap , 0.
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Another kind of model of great practical importance in the representation
of observed time series is the moving average model. The standard form of a

moving average model of orderq, denoted by MA(q), is given byxt =

q∑

j=1
b jǫt− j +

ǫt; t ∈ Z whereb j, q are fixed parameters, withbq , 0.
To achieve greater flexibility in the fitting of actually observed time series, it

is more advantageous to include both autoregressive and moving average terms
in the model. Such models called autoregressive–moving average models, de-
noted by ARMA (p,q), have the form

xt =

p∑

j=1

a j xt− j +

q∑

k=1

bkǫt−k + ǫt; t ∈ Z

where{a j}pj=1 and{bk}qk=1 are real constants called parameters of the model. It can
be seen that an AR(p) model is the same as an ARMA(p,o) model and a MA(q)
model is the same as an ARMA(o,q) model.

With the introduction of various non–Gaussian and non–linear models, the
standard form of autoregression was widened in several respects.

A more general definition of autoregression of orderp is given in terms of
the linear conditional expectation requirement that

E(xt |xt−1, xt−2, . . .) =
p∑

j=1

a j xt− j

This definition could apply to models which are not of the linear form (see
Lawrance (1991)).

2.3.3. A general solution

We consider a first order autoregressive model with innovation given by the
structural relationship

xn = ǫn +






0 with probabilityp

xn−1 with probability 1− p
(2.3.1)

wherep ∈ (0, 1) and{ǫn} is a sequence of independent and identically distributed
(i.i.d.) random variables selected in such a way that{xn} is stationary Markovian
with a given marginal distribution functionF.
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Let φx(t) = E[e−tx] be the Laplace–Stieltjes transform ofx. Then (2.3.1)
gives

φxn(t) = φǫn(t)[p+ (1− p)φxn−1(t)]

If we assume stationarity, this simplifies to

φǫ(t) =
φx(t)

p+ (1− p)φx(t)
(2.3.2)

or equivalently

φx(t) =
pφǫ(t)

1− (1− p)φǫ(t)
. (2.3.3)

When{xn} is marginally distributed as exponential, it is easy to see that (2.3.1)
gives the TEAR(1) model.

We note thatφǫ(t) in (2.3.2) does not represent a Laplace transform always.
In order that the process given by (2.3.1) is properly defined, there should exist
an innovation distribution such thatφǫ(t) is a Laplace transform for allp ∈ (0, 1).
To establish the main results we need the following lemmas.

(Pillai (1990b)) LetF be a distribution with positive support andφ(t) be its
Laplace transform. ThenF is geometrically infinitely divisible if and only if

φ(t) =
1

1+ ψ(t)

whereψ(t) is Bernstein withψ(0) = 0.

Now we consider the following definition from Pillai (1990b).

Definition 2.3.1. For any non–vanishing Laplace transformφ(t), the
function

ψ(t) =
1
φ(t)
− 1 is called the third characteristic.

Lemma 2.3.1. Let ψ(t) be the third characteristic ofφ(t). Thenpψ(t) is a third
characteristic for allp ∈ (0, 1) if and only ifψ(t) has complete monotone deriva-
tive andψ(0) = 0.

Thus we have the following theorem.
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Theorem 2.3.1. φǫ(t) in (2.3.2) represents a Laplace transform for all p∈
(0, 1) if and only if φx(t) is the Laplace transform of a geometrically infinitely
divisible distribution.

This leads to the following theorem which brings out the roleof geometri-
cally infinitely divisible distributions in defining the newfirst order autoregres-
sive model given by (2.3.1).

Theorem 2.3.2. The innovation sequence{ǫn} defining the first order autore-
gressive model given by

xn = ǫn +






0 with probability p

xn−1 with probability1− p

where p ∈ (0, 1), exists if and only if the stationary marginal distributionof
xn is geometrically infinitely divisible. Then the innovationdistribution is also
geometrically infinitely divisible.

Proof 2.3.1. Suppose that an innovation sequence{ǫn} such that the model (2.3.1)
is properly defined exists. This implies thatφǫ(t) in (2.3.3) is a Laplace transform
for all p ∈ (0, 1). Then from (2.3.3)

φx(t) = pφǫ(t)[1 − (1− p)φǫ(t)]
−1

=

∞∑

n=1

p(1− p)n−1[φǫ(t)]
n

showing that the stationary marginal distribution ofxn is geometrically infinitely
divisible. Conversely, ifxn has a stationary marginal distribution which is ge-

ometrically infinitely divisible, thenφx(t) =
1

1+ ψ(t)
whereψ(t) has complete

monotone derivative andψ(0) = 0. Then from (2.3.2) we getφǫ(t) =
1

1+ pψ(t)
,

which establishes the existence of an innovation distribution, which is geometri-
cally infinitely divisible.
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2.3.4. Extension to a k-th order autoregressive model

In this section we consider an extension of the model given by(2.3.1) to the
k-th order. The structure of this model is given by

xn = ǫn +






0 with probabilityp0

xn−1 with probabilityp1
...

xn−k with probabilitypk

(2.3.4)

wherepi ∈ (0, 1) for i = 0, 1, . . . , k andp0 + p1 + · · · + pk = 1. Taking Laplace
transforms on both sides of (2.3.4) we get

φxn(t) = φǫn(t)



p0 +

k∑

i=1

piφxn−i (t)





Assuming stationarity, it simplifies to

φx(t) = φǫ(t)



p0 +

k∑

i=1

piφx(t)





= φǫ(t)[p0 + (1− p0)φx(t)].

This yields

φǫ(t) =
φx(t)

p0 + (1− p0)φx(t)
(2.3.5)

which is analogous to the expression (2.3.2).
It may be noted thatk = 1 corresponds to the first order model withp =

p0. From (2.3.5) it follows that the results obtained in Section 2.1.2 hold good
for the k-th order model given by (2.3.4). This establishes the importance of
geometrically infinitely divisible distributions in autoregressive modelling.

2.3.5. Mittag-Leffler autoregressive structure

The Mittag-Leffler distribution was introduced by Pillai (1990a) and has

Laplace transformφ(t) =
1

1+ tα
, 0 < α ≤ 1. Whenα = 1, this corresponds to the

exponential distribution with unit mean. Jayakumar and Pillai (1993) considered
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the semi–Mittag-Leffler distribution with exponentα. Its Laplace transform is of

the form
1

1+ η(t)
whereη(t) satisfies the functional equation

η(t) = aη(bt), 0 < b < 1 (2.3.6)

anda is the unique solution ofabα = 1 where 0< α ≤ 1. Then by Lemma 2.3.1
of Jayakumar and Pillai (1993), the solution of the functional equation (2.3.6) is

η(t) = tαh(t) whereh(t) is periodic in lnt with period−2πα
ln b

. Whenh(t) = 1,

η(t) = tα and hence the Mittag-Leffler distribution is a special case of the semi-
Mittag-Leffler distribution. It is obvious that the semi–Mittag-Leffler distribution
is geometrically infinitely divisible.

Now we bring out the importance of the semi-Mittag-Leffler distribution in
the context of the new autoregressive structure given by (2.3.1). The following
theorem establishes this.

Theorem 2.3.3. For a positive valued first order autoregressive process{xn}
satisfying (2.3.1) the stationary marginal distribution of xn and ǫn are identical
except for a scale change if and only if xn’s are marginally distributed as semi-
Mittag-Leffler.

Proof 2.3.2. Suppose that the stationary marginal distributions ofxn andǫn are
identical. This impliesφǫ(t) = φx(ct) wherec is a constant. Then from (2.3.2)
we get

φx(ct) =
φx(t)

p+ (1− p)φx(t)
(2.3.7)

Writing φx(t) =
1

1+ η(t)
in (2.1.7) we get

1
1+ η(ct)

=
1

1+ pη(t)

so that

η(ct) = pη(t)

By choosingc = p1/α, it follows that xn is distributed as semi–Mittag-Leffler
with exponentα.
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Conversely, we assume that the stationary marginal distribution of xn is semi-
Mittag-Leffler. Then from (2.3.2)

φǫ(t) =
1

1+ pη(t)
=

1
1+ η(p1/αt)

.

This establishes thatǫn
d
= p1/αMn where{Mn} are independently and identically

distributed as semi–Mittag-Leffler.
It can be easily seen that the above result is true in the case of the k-th order

autoregressive model given by (2.3.4) also.

Exercises 2.3.

2.3.1. Define an AR(1) process and obtain the stationary solution for the
distribution of{ǫn} when{xn} are exponentially distributed.

2.3.2. Show that an AR(1) model can be expressed asMA(∞) model.

2.3.3. Consider a new AR(1) model with exponential innovations.

2.3.4. Examine whether two-parameter Gamma distribution is g.i.d., giving
conditions if any.

2.3.5. Show that exponential distribution is a special case of Mittag-Leffler
distribution.

2.3.6. Obtain the stationary distribution of{ǫn} in the AR(1) structurexn =

axn−1 + ǫn; a ∈ (0, 1) when{xn} follows exponential distribution. Generalize it to
the case of Mittag-Leffler random variables.

2.3.7. Obtain the structure of the innovation distribution if{xn} follows α-
Laplace distribution wherexn = axn−1 + ǫn. Deduce the case whenα = 2.

2.3.8. Show that if{xn} follows Cauchy distribution then{ǫn} also follows a
Cauchy distribution in the AR(1) equationxn = axn−1 + ǫn.
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2.4. A Structural Relationship and New Processes

In this section we obtain the specific structural relationship between the sta-
tionary marginal distributions ofxn andǫn in the new autoregressive model.

Fujita (1993) generalized the results on Mittag-Leffler distributions and ob-
tained a new characterization of geometrically infinitely divisible distributions
with positive support using Bernstein functions. It was established that a distri-
bution functionG with G(0) = 0 is geometrically infinitely divisible if and only
if G can be expressed in the form.

G(x) =
∞∑

n=1

(−1)n+1λnWn∗([0, x]); x > 0, λ > 0 (2.4.1)

whereWn∗(dx) is then-fold convolution measure of a unique positive measure
W(dx) on [0,∞) such that

1
f (x)
=

∫ ∞

0
e−sxW(ds); x > 0 (2.4.2)

for some Bernstein functionf such that limx↓o(x) = 0 and limx→∞ f (x) = ∞.

Then the Laplace transform ofG(x) is
λ

λ + f (t)
. Using this result we get the

following theorem.

Theorem 2.4.1. The k-th order autoregressive equation given by (2.3.4) de-
fines a stationary process with a given marginal distribution function Fx(x) for
xn if and only if Fx(x) can be expressed in the form

Fx(x) =
∞∑

n=1

(−1)n+1λnWn∗([0, x]); x > 0, λ > 0. (2.4.3)

Then the innovations{ǫn} have a distribution function Fǫ(x) given by

Fǫ(x) =
∞∑

n=1

(−1)n+1(λ/p0)
nWn∗([0, x]); x > 0, λ > 0, (2.4.4)

where p0 ∈ (0, 1) and Wn∗ is as in(2.4.1).
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Proof 2.4.1. We have from Theorem 2.3.1 thatFx(x) is geometrically infinitely
divisible. Then (2.4.3) follows directly from Fujita (1993).

Now by substitutingφx(t) =
λ

λ + f (t)
in (2.1.2) we get

φǫ(t) =
λ

λ + p0 f (t)
=

(λ/p0)
(λ/p0) + f (t)

which leads to (2.4.4). This completes the proof.

The above theorem can be used to construct various autoregressive models
under different stationary marginal distributions forxn.

For example, the TEAR(1) model of Lawrance and Lewis (1981) can be

obtained by takingf (t) = t. ThenWn∗([0, x]) =
xn

n!
so thatFx(x) = 1− e−λx and

Fǫ(x) = 1 − e−(λ/p)x. If we takeλ = 1 and f (t) = tα; 0 < α ≤ 1 we can obtain
an easily tractable first order autoregressive Mittag-Leffler process denoted by

TMLAR(1). In this caseWn∗([0, x]) =
xnα

Γ(1+ nα)
. In a similar manner by taking

λ = 1 and f (t) satisfying the functional equationf (t) = a f(bt) wherea = b−α;
0 < b < 1, 0< α ≤ 1, we can obtain an easily tractable first order autoregressive
semi–Mittag-Leffler process denoted by TSMLAR(1).

2.4.1. The TMLAR(1) process

An easily tractable form of a first order autoregressive Mittag-Leffler process,
called TMLAR(1), is constituted by{xn} having a structure of the form

xn = p1/αMn +






0 with probability p

xn−1 with probability 1-p
(2.4.5)

where p ∈ (0, 1); 0 < α ≤ 1 and{Mn} is independently and identically dis-

tributed as Mittag-Leffler with exponentα andx0
d
= M1. The model (2.4.5) can

be rewritten in the form

xn = p1/αMn + Inxn−1 (2.4.6)

where{In} is a Bernoulli sequence such thatP(In = 0) = p andP(In = 1) = 1− p.
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If in the structural form (2.4.5), we assume that{Mn} are distributed as semi–
Mittag-Leffler with exponentα, then {xn} constitute a tractable semi–Mittag-
Leffler autoregressive process of order 1, called TSMLAR(1). Both models are
Markovian and stationary. It can be seen that the TMLAR(1) process is a special
case of the TSMLAR(1) process since the Mittag-Leffler distribution is a special
case of the semi–Mittag-Leffler distribution.

Now we shall consider the TSMLAR(1) process and establish that it is strictly
stationary and Markovian, providedx0 is distributed as semi–Mittag-Leffler. In
order to prove this we use the method of induction.

Suppose thatxn−1 is distributed as semi–Mittag-Leffler (α). Then by taking
Laplace transforms on both sides of (2.4.5), we get

φxn(t) = φMn(p
1/αt)[p+ (1− p)φxn−1(t)]

=
1

1+ η(p1/αt)

[

p+ (1− p)
1

1+ η(t)

]

=
1

1+ pη(t)
· 1+ pη(t)

1+ η(t)

=
1

1+ η(t)
.

Hencexn is distributed as semi–Mittag-Leffler with exponentα.

If x0 is arbitrary, then also it is easy to establish that{xn} is asymptotically
stationary. Thus we have the following theorem.

Theorem 2.4.2. The first order autoregressive equation

xn = p1/αMn + Inxn−1; n = 1, 2, . . . , p ∈ (0, 1)

where {In} are independent Bernoulli random variables such that
P(In = 0) = p = 1 − P(In = 1) defines a positive valued strictly stationary
first order autoregressive process if and only if{Mn} are independently and iden-

tically distributed as semi–Mittag-Leffler with exponentα and x0
d
= M1.

Remark 2.4.1. If we consider characteristic functions instead of Laplacetrans-
forms, the results can be applied to real valued autoregressive processes. Then
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the role of semi–Mittag-Leffler distributions is played by semi–α–Laplace distri-
butions introduced by Pillai (1985).

2.4.2. The NEAR(1) model

In this section we consider a generalized form of the first order autoregressive
equation. The new structure is given by

xn = ǫn +






0 with probabilityp

axn−1 with probability 1− p
(2.4.7)

where 0≤ p ≤ 1; 0 ≤ a ≤ 1 and{ǫn} is a sequence of independent and identi-
cally distributed random variables such that{xn} have a given stationary marginal
distribution. Letφx(t) = E[e−tx] be the Laplace–Stieltjes transform ofx. Then
(2.4.7) gives

φxn(t) = φǫn(t)[p+ (1− p)φxn−1(at)]

Assuming stationarity, it simplifies to

φǫ(t) =
φx(t)

p+ (1− p)φx(at)
. (2.4.8)

When p = 0 and 0< a < 1, the model (2.4.7) is the standard first order
autoregressive model. Then the model is properly defined if and only if the
stationary marginal distribution ofxn is self–decomposable. Whena = 1, 0 <
p < 1 the model is the same as the model (2.4.1), which is properlydefined if
and only if the stationary marginal distribution ofxn is geometrically infinitely
divisible. Whena = 0 or p = 1, xn andǫn are identically distributed.

Now we consider the case whena ∈ (0, 1] andp ∈ (0, 1], but not simultane-
ously equal to 1. Lawrance and Lewis (1981) developed an NEAR(1) model with

exponential (λ) marginal distribution forxn. Thenφx(t) =
λ

λ + t
and substitution

in (2.4.8) gives

φǫ(t) =
λ + at
λ + t

· λ

λ + pat
(2.4.9)
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which can be rewritten as

φǫ(t) =

(

1− a
1− pa

) (
λ

λ + t

)

+

[

(1− p)a
1− pa

] (

λ

λ + pat

)

.

Henceǫn can be regarded as a convex exponential mixture of the form

ǫn =






En with probability 1−a
1−pa

paEn with probability (1−p)a
1−pa

(2.4.10)

where{En}; n = 1, 2, . . . are independent and identically distributed as exponen-
tial (λ) random variables. Another representation forǫn can be obtained from
(2.4.9) by writing

φǫ(t) =
[

a+ (1− a)
λ

λ + t

][
λ

λ + pat

]

. (2.4.11)

Then writing w.p. for ‘with probability’ǫn can be regarded as the sum of two
independent random variablesun andvn where

un =






0 w. p. a

En w. p. 1− a and
(2.4.12)

vn = paEn

where {En}; n = 1, 2, . . . are exponential (λ). It may be noted that when
p = 0, the model is identical with the EAR(1) process, of Gaver and Lewis
(1980). Thus the new representation ofǫn seems to be more appropriate, when
NEAR(1) process is regarded as a generalization of the EAR(1) process.

2.4.3. New Mittag-Leffler autoregressive models

Now we construct a new first order autoregressive process with Mittag-Leffler
marginal distribution, called the NMLAR(1) model.

The structure of the model is as in (2.4.7) and the innovations can be derived

by substitutingφx(t) =
1

1+ tα
; 0 < α ≤ 1 in (2.4.8). This gives

φǫ(t) =
1+ aαtα

1+ tα
·

1
1+ aαptα

.

Hence the innovationsǫn can be given in the form
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ǫn =






Mn with probability 1−aα

1−paα

paαMn with probability (1−p)aα

1−paα
(2.4.13)

where{Mn} are Mittag-Leffler (α) random variables.

An alternate representation ofǫn is ǫn = un + vn whereun andvn are indepen-
dent random variables such that

un =






0 w.p.aα

Mn w.p. 1− aα and
(2.4.14)

vn = ap1/αMn

where{Mn}; n = 1, 2, . . . are independent Mittag-Leffler (α) random variables.

It can be shown that the process is strictly stationary and Markovian. This
gives us the following theorem.

Theorem 2.4.3. The first order autoregressive equation given by(2.4.7)
defines a strictly stationaryAR(1) process with a Mittag-Leffler (α) marginal
distribution for xn if and only if the innovations are of the formǫn = un + vn

where un andvn are as in(2.4.14)with x0 distributed as Mittag-Leffler (α).

Proof 2.4.2. We prove this by induction. We assume thatxn−1 is Mittag-Leffler
(α). Then by taking Laplace transforms, we get

φxn(t) = φMn(ap1/αt) · [aα + (1− aα)φMn(t)]

× [p+ (1− p)φxn−1(at)]

=
1

1+ aαptα
·
[

aα + (1− aα)
1

1+ tα

]

×
[

p+ (1− p)
1

1+ aαtα

]

=
1

1+ aαptα
·

1+ aαtα

1+ tα
·

1+ paαtα

1+ aαtα

=
1

1+ tα
.
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This shows thatxn is distributed as Mittag-Leffler (α), and this establishes the
sufficiency part.

The necessary part is obvious from the derivation of the innovation sequence.
This completes the proof.

The joint distribution of (xn, xn−1) is of interest in describing the process and
matching it with data. Therefore, we shall obtain the joint distribution with the
use of Laplace-Stieltjes transforms. The bivariate Laplace transform is given by

φxn,xn−1(s, t) = E{exp(−sxn − txn−1)}
= φǫ(s){pφx(t) + (1− p)φx(as+ t)}

=
1+ aαsα

1+ sα
·

1
1+ paαsα

·
{

p
1+ tα

+
1− p

1+ (as+ t)α

}

.

It is possible to obtain the joint distribution by invertingthis expression.

2.4.4. The NSMLAR(1) process

Now we extend the NMLAR(1) process to a wider class to construct a new
semi–Mittag-Leffler first order autoregressive process. The process has the
structure

xn = ǫn +






0 with probabilityp

axn−1 with probability 1− p

where{ǫn} are independently and identically distributed as the sum oftwo inde-
pendent random variablesun andvn where

un =






0 w.p.aα

Mn w.p. 1− aα and
(2.4.15)

vn = ap1/αMn

where{Mn}; n = 1, 2, . . . are independently and identically distributed as semi–
Mittag-Leffler (α).

This process is also clearly strictly stationary and Markovian providedx0 is
semi–Mittag-Leffler (α). This follows by induction. In terms of Laplace trans-
forms we have
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φxn(t) = [p+ (1− p)φxn−1(at)][aα + (1− aα)φMn(t)]

× [φMn(ap1/αt)]

=

[

p+ (1− p) · 1
1+ η(at)

] [

aα + (1− aα) · 1
1+ η(t)

]

×
1

1+ η(ap1/αt)

=

[

p+ (1− p)
1

1+ aαη(t)

]

·
[

1+ aαη(t)
1+ η(t)

]

× 1
1+ aαpη(t)

=
1

1+ η(t)
.

Thus we have established the following theorem.

Theorem 2.4.4. The first order autoregressive equation

xn = aInxn−1 + ǫn; n = 1, 2, . . .

where {In} are independent Bernoulli sequences such that P(In = 0) = p
and P(In = 1) = 1 − p; p ∈ (0, 1), a ∈ (0, 1) is a strictly stationary AR(1)
process with semi–Mittag-Leffler (α) marginal distribution if and only if{ǫn} are
independently and identically distributed as the sum of twoindependent random
variables un and vn as in (2.4.15) and x0 is distributed as semi–Mittag-Leffler
(α).

Whenη(t) = tα, the NSMLAR(1) model becomes the NMLAR(1) model.

Remark 2.4.2. If we consider characteristic functions instead of Laplacetrans-
forms, the results can be applied to real valued autoregressive processes. Then
the role of semi-Mittag-Leffler distributions is played by semi-α-Laplace dis-
tributions introduced by Pillai (1985). As special cases weget Laplace andα-
Laplace processes.
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Exercises 2.4.

2.4.1. If f (t) = t, find Wn∗([0, x]).

2.4.2. If f (t) = tα, find Fǫ(x).

2.4.3. State any three distributions belonging to the semi-Mittag-Leffler family.

2.4.4. Show that the stationary solution of Equation 4.5.7 is a family consisit-
ing of g.i.d. and classL distributions.

2.4.5. Obtain the innovation structure of the NEAR(1) model.

2.4.6. Obtain the innovation structure of the NMLAR(1) model.

2.5. Tailed Processes

In an attempt to develop autoregressive models for time series with exact
zeroes Littlejohn (1993) formulated an autoregressive process with exponential
tailed marginal distribution, after the new exponential autoregressive process
(NEAR(1)) of Lawrance and Lewis (1981). However, the primary aim of Lit-
tlejohn was to extend the time reversibility theorem of Chernick et al.(1988) and
hence the model was not studied in detail. Hence we intend to make a detailed
study on this process. Here the tail of a non–negative randomvariable refers to
the positive part of the sample space, excluding only the point zero.

Definition 2.5.1. A random variableE is said to have the exponential tailed
distribution denoted byET(λ, θ) if P(E = 0) = θ andP(E > x) = (1 − θ)e−λx;
x > 0 whereλ > 0 and 0≤ θ < 1. Then the Laplace-Stieltjes transform ofE is
given by

φE(t) = θ + (1− θ)
λ

λ + t

=
λ + θt
λ + t
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2.5.1. The exponential tailed autoregressive process [ETAR(1)]

It is evident that the exponential tailed distribution is not self–decomposable
and so it cannot be marginal to the autoregressive structureof Gaver and Lewis
(1980). But an autoregressive process satisfying the NEAR(1) structure given by
(2.4.7) can be constructed as follows.

We have from (2.4.8), by substitutingφx(t) =
λ + θt
λ + t

, the Laplace transform

of the innovationǫn in the stationary case as

φǫ(t) =
[
λ + θt
λ + t

] [

λ + at
λ + a[p+ (1− p)θ]t

]

=

[
λ + at
λ + t

] [
λ + θt
λ + bt

]

whereb = a[p+ (1− p)θ]

φǫ(t) =
[

a+ (1− a)
λ

λ + t

] [

θ

b
+

(

1−
θ

b

) (λ/b)
(λ/b) + t

]

so that the innovations{ǫn} can be represented as the sum of two independent
exponential tailed random variablesun andvn where

un
d
= ET(λ, a) and vn

d
= ET

(

λ′, θ′
)

(2.5.1)

whereλ′ = λ/b andθ′ = θ/b, providedθ ≤ b. Sincep ≤ 1, we require that
θ ≤ a. Thus the ETAR(1) process can be defined as a sequence{xn} satisfy-
ing (2.4.7) where{ǫn} is a sequence of independent and identically distributed
random variables such thatǫn = un + vn whereun andvn are as in (2.5.1).

It can be easily shown that the process is strictly stationary and Markovian
providedx0 is distributed asET(λ, θ). This follows by mathematical induction
since
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φxn(t) = φǫn(t) · [p+ (1− p)φxn−1(at)]

=
λ + at
λ + t

·
λ + θt
λ + bt

·
[

p+ (1− p)
(
λ + θat
λ + at

)]

=
λ + at
λ + t

·
λ + θt
λ + bt

·
λ + bt
λ + at

=
λ + θt
λ + t

.

Whenθ = 0, theET(λ, θ) distribution reduces to the exponential (λ) distribution
and the ETAR(1) model then becomes the NEAR(1) model.

2.5.2. The Mittag-Leffler tailed autoregressive process [ML-
TAR(1)]

The Mittag-Leffler tailed distribution has Laplace transform given by

φx(t) = θ + (1− θ) · 1
1+ tα

=
1+ θtα

1+ tα
; 0 < α ≤ 1

and the distribution shall be denoted by MLT (α, θ). Similarly for a two-parameter
Mittag-Leffler random variable ML(α, λ) the Laplace transform of the tailed
Mittag-Leffler distribution is given byφx(t) = θ + (1 − θ) λα

λα+tα =
λα+θtα

λα+tα . This
shall be denoted by MLT(α, λ, θ). The MLTAR(1) process has the general struc-
ture given by the equation (2.4.7). The innovation structure can be derived as
follows.

φǫ(t) =
1+ θtα

1+ tα
·

1+ aαtα

1+ aα[p+ (1− p)θ]tα

=
1+ aαtα

1+ tα
· 1+ θtα

1+ ctα

wherec = aα[p+ (1− p)θ]. Therefore

φǫ(t) =

[

aα + (1− aα)
1

1+ tα

] 



1
c +

θ

ctα

1
c + tα



 .
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Hence the innovation{ǫn} can be viewed as the sum of two independently dis-
tributed random variablesun andvn where

un
d
= MLT(α, aα)

and
vn

d
= MLT

(

α, λ′, θ′
)

whereλ′ = 1/c1/α andθ′ = θ/c providedθ ≤ c. This holds whenθ ≤ aα.

The model can be extended to the class of semi–Mittag-Leffler distributions.
Here we consider a semi–Mittag-Leffler distribution with Laplace transform

φx(t) =
λα

λα + η(t)

whereη(t) satisfies the functional equation

η(mt) = mαη(t); 0 < m< 1; 0< α ≤ 1.

This is denoted by SML(α, λ). Then the semi–Mittag-Leffler tailed distribution
denoted by SMLT(α, λ, θ) has Laplace transform

φx(t) =
λα + θη(t)
λα + η(t)

.

The first order semi-Mittag-Leffler tailed autoregressive (SMLTAR(1)) process
has innovations whose Laplace transform is given by

φǫ(t) =

[

λα + θη(t)
λα + η(t)

] [

λα + aαη(t)
λα + cη(t)

]

wherec = aα[p+ (1− p)θ]. Therefore

φǫ(t) =

[

λα + aαη(t)
λα + η(t)

] [

λα + θη(t)
λα + cη(t)

]

=

[

aα + (1− aα)
λα

λα + η(t)

] [

θ

c
+

(

1− θ
c

)
λα/c

λα/c+ η(t)

]

.

Therefore, the innovations{ǫn} can be represented as the sum of two independent
semi–Mittag-Leffler tailed random variablesun andvn where
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un
d
= S MLT(α, λ, aα) and vn

d
= S MLT

(

α, λ′, θ′
)

(2.5.2)

whereλ′ = λ/c1/α, θ′ = θ/c. Then we have the following theorem which gives
the stationary solution of the SMLTAR(1) model.

Theorem 2.5.1. For 0 < p < 1, 0 < a < 1 the stationary Markov process
{xn} defined by(2.4.7) has a semi–Mittag-Leffler tailed SMLT(α, λ, θ) marginal
distribution if and only if the innovation sequence{ǫn} are independent and iden-
tically distributed as the sum of two independent semi–Mittag-Leffler Tailed

random variables as in(2.5.2), provided x0
d
= S MLT(α, λ, θ).

The stationarity of the process can be easily established, as given below.

φxn(t) = φǫn(t)[p+ (1− p)φxn−1(at)]

=

[

λα + aαη(t)
λα + η(t)

] [

λα + θη(t)
λα + cη(t)

]

×
[

p+ (1− p)
λα + θη(at)
λα + η(at)

]

=

[

λα + aαη(t)
λα + η(t)

] [

λα + θη(t)
λα + cη(t)

] [

λα + cη(t)
λα + η(at)

]

=
λα + θη(t)
λα + η(t)

sinceη(at) = aαη(t).

Hencexn is distributed as SMLT(α, λ, θ). The necessity part follows easily from
the derivation of the structure of the innovation sequence.Now we consider the
following theorem.

Theorem 2.5.2. In a positive valued stationary Markov process{xn} sat-
isfying the first order autoregressive equation xn = axn−1 + ǫn, 0 < a < 1 the
innovations{ǫn} are independently and identically distributed as a tailed dis-
tribution of the same type as that of{xn} if and only if {xn} are distributed as
semi–Mittag-Leffler .

Proof 2.5.1. We have, assuming stationarity,
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φx(t) = φx(at)φǫ(t).

Suppose

φǫ(t) = θ + (1− θ)φx(t) where 0≤ θ < 1.

Then

φx(t) = φx(at)[θ + (1− θ)φx(t)].

Writing

φx(t) =
1

1+ η(t)
, we get

1
1+ η(t)

=
1

1+ η(at)

[

θ + (1− θ) 1
1+ η(t)

]

=

[

1
1+ η(at)

] [

1+ θη(t)
1+ η(t)

]

.

This impliesη(at) = θη(t). By takingθ = aα, this means that the distribution of
xn is semi–Mittag-Leffler .

Conversely, if{xn} are semi–Mittag-Leffler , we get

φǫ(t) =
φx(t)
φx(at)

=
1+ η(at)
1+ η(t)

=
1+ aαη(t)
1+ η(t)

= aα + (1− aα)
1

1+ η(t)
.

Hence{ǫn} is distributed as SMLT(α, aα).

The SMLTAR(1) process can be regarded as generalizations ofthe EAR(1),
NEAR(1), MLAR(1), NMLAR(1), TEAR(1), ETAR(1) and MLTAR(1)pro-
cesses. These processes are useful to model non-negative time series data which
exhibit zeros, as in the case of stream flow data of rivers thatare dry during part
of the year. They are useful for modelling life times of devices which have some
probability for damage immediately when it is put to use.In asimilar manner,the
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models can be extended to the semi-α-Laplace case and its special cases. Also
geometric Mittag-Leffler and geometric alpha-Lapace distributions and time se-
ries models can be developed.

Exercises 2.5.

2.5.1. Derive the Laplace transform of the exponential tailed distribution

2.5.2. Derive the innovation structure of the Mittag-Leffler tailed autoregres-
sive process.

2.5.3. Examine whether the Mittag-Leffler tailed distribution is self decom-
posable.

2.5.4. Give a real life example where the exponential tailed distribution can
be used for modelling.

2.5.5. Show that Laplace distribution belongs to the semi-α-Laplace family.

2.5.6. Define a geometric exponential distribution similar to the geometric
stable distribution.

2.5.7. Try to develop a generalized Laplacian model, with characteristic
functionϕx(t) =

(
1

1−β2t2

)α
.

2.5.8. Develop the concept in geometric infinite divisibility by replacing
addition by minimum in the case of g.i.d.

2.5.9. Develop an autoregressive minification structure by replacing addition
by minimum in the standard AR(1) equation.
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2.6. Marshall-Olkin Weibull Time Series Models

2.6.1. Introduction

The need for developing time series models having non - Gaussian marginal
distributions has been long felt from the fact that many naturally occurring time
series are non - Gaussian with Markovian structure. In recent years Tavares
(1980), Yeh et al. (1988), Arnold and Robertson (1989), Pillai (1991), Alice
and Jose (2004, 2005) and others have developed various autoregressive mod-
els with minification structure. The Weibull distribution,including exponential
distribution play a central role in the modeling of survivalor lifetime data and
time series data of non-negative random variables such as hydrological data and
wind velocity magnitudes. Lewis and McKenzie (1991), Brownet al (1984)
note that although studies have shown that Weibull marginaldistributions have
been found adequate for wind velocity magnitudes, unfortunately ‘no time se-
ries models have been rigorously developed for random variables possessing a
Weibull distribution’. Wind power data are even more likelyto need very long
tailed marginal distributions. Again in reliability studies, sequences of times be-
tween failures are correlated and models with non-constantmarginal hazard rate
are needed to model them adequately.

2.6.2. Marshall-Olkin semi-Weibull distribution and its p rop-
erties

We say that a random variable X with positive support has a semi-Weibull distri-

bution and writeX
d
= S W(β, ρ) if its survival function is given by

F̄x(x) = P(X > x) = exp(−Ψ(x)) (2.6.1)

whereΨ(x) satisfies the functional equation,

ρΨ(x) = Ψ(ρ
1
β x); β > 0, 0 < ρ < 1 (2.6.2)

Equation (2.6.2) will give on iteration

ρn
Ψ(x) = Ψ(ρ

n
β x).

On solving (2.6.2) we obtainΨ(x) = xβh(x), where h(x) is periodic in ln x with
period

(−2πβ
ln ρ

)

. For details see Jose (1994, 2005) .
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We consider a new family of distributions introduced by Marshall and Olkin
(1997). Considering a survival function̄F, we get the one-parameter family of
survival functions

Ḡ(x;α) =
αF̄(x)

[1 − (1− α)F̄(x)]
;−∞ < x < ∞, 0 < α < ∞. (2.6.3)

It can be easily seen that whenα = 1, Ḡ = F̄.
Whenever F has a density, the family of survival functions given byḠ(x;α)

in (2.6.3) has easily computed densities. In particular, ifF has a density f and
hazard raterF, then G has the density g given by

g(x;α) =
α f (x)

{1− (1− α)F̄(x)}2
(2.6.4)

and hazard rate

r(x;α) =
rF(x)

(1− (1− α)F̄(x)
;−∞ < x < ∞ (2.6.5)

Substituting (2.6.1) in (2.6.3) we get a new family of distributions, which we
shall refer to as the survival function of Marshall-Olkin semi-Weibull [MOSW
(α, β, ρ)] family, whose survival function is given by

Ḡ(x;α) =
α

eΨ(x) − (1− α)
; x > 0, α > 0.

The probability density function corresponding to G is given by

g(x;α) =
αeΨ(x)

Ψ
′(x)

[eΨ(x) − (1− α)]2
; x > 0, α > 0.

The hazard rate is given by

r(x;α) =
Ψ
′(x)

1− (1− α)e−Ψ(x)
; x > 0, α > 0.

Now we establish the following properties.

Theorem 2.6.1. Let N be an integer valued random variable independent
of the Xn’s such that P[N ≥ 2] = 1 where {Xn} is a sequence of indepen-
dent and identically distributed MOSW random variables. Then Y= ( N

α
)

1
β min

(X1,X2, ...,XN); N > α,N > 1 is distributed as semi-Weibull.
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Proof 2.6.1. We have

F̄Y(x) = P[Y > x]

=

∞∑

n=2

P[N = n].P[Y > x|N = n]

=

∞∑

n=2

P[N = n].[F̄X((
n
α

)−1/βx)]n

=

∞∑

n=2

P[N = n].





1

1+ ( 1
α
)Ψ(( n

α
)−1/βx)





n

= e−Ψ(x)

HenceY is distributed as semi-Weibull.

Theorem 2.6.2. If {X1,X2, · · · ,Xn} are independently and identically dis-
tributed as MOSP(α, β, p), then Zn = ( n

α
)

1
β min(X1,X2, · · · ,Xn);α, β > 0, n >

1, n > α;is asymptotically distributed as semi-Weibull.

Proof 2.6.2. If X is distributed as Marshall-Olkin semi-Pareto, MOSP (α, β, p),
then

F̄(x;α, β, p) =
1

1+ 1
α
ψ(x)

where

ψ(x) = ψ(p
1
β x).

Hence

F̄zn(x) = P
[

(
n
α

)
1
β (minX1,X2, · · · ,Xn) > x

]

=

[

F̄X

(

(
n
α

)−
1
β x

)]n

=





1

1+ ψ(x)
n





n

→ e−ψ(x)

asn tends to infinity.
Similar results can be obtained in the case of Marshall OlkinPareto and

Weibull distribution as a special case.
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Theorem 2.6.3. Let {Xi, i ≥ 1} be a sequence of independent and identically
distributed random variables with common survival function F̄(x) and N be a
geometric random variable with parameter p and P(N = n) = pqn−1; n=1,2,...,
0 < p < 1, q=1-p, which is independent of{Xi} for all i ≥ 1. Let UN = min

1≤i≤N
Xi.

Then {UN} is distributed as MOSW if and only if{Xi} is distributed as semi-
Weibull.

Proof 2.6.3.

H̄(x) = P(UN > x)

=

∞∑

n=1

[F̄(x)]npqn−1

=
pF̄(x)

1− (1− p)F̄(x)
.

Suppose
F̄(x) = exp(−Ψ(x)).

Then

H̄(x) =
1

1+ ( 1
p)(eΨ(x) − 1)

,

which is the survival function of MOSW. This proves the sufficiency part of the
theorem. Conversely, suppose

H̄(x) =
1

1+ ( 1
p)(eΨ(x) − 1)

.

Then we get
F̄(x) = exp(−Ψ(x)),

which is the survival function of semi-Weibull.

2.6.3. An AR(1) model with MOSW marginal distribution

In this section we consider a first order autoregressive model.

Theorem 2.6.4. Consider an AR (1) structure given by

Xn =

{

ǫn w.p p
min(Xn−1, ǫn) w.p (1− p)

(2.6.6)
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where{ǫn} is a sequence of independent and identically distributed random vari-
ables independent of Xn, then{Xn} is a stationary Markovian AR(1) process with
MOSW marginals if and only if{ǫn} is distributed as semi-Weibull distribution.

Proof 2.6.4. From (2.6.6) it follows that

F̄Xn(x) = pF̄ǫn(x) + (1− p)F̄Xn−1(x).F̄ǫn(x) (2.6.7)

Under stationary equilibrium,

F̄X(x) =
pF̄ǫ(x)

[1 − (1− p)F̄ǫ(x)]
.

If we takeF̄ǫ(x) = e−Ψ(x), then it easily follows that

F̄X(x) =
p

eΨ(x) − (1− p)
,

which is the survival function of MOSW.
Conversely, if we take,

F̄Xn(x) =
p

eΨ(x) − (1− p)
,

it is easy to show thatFǫn(x) is distributed as semi-Weibull and the process is
stationary. In order to establish stationarity we proceed as follows.

AssumeXn−1
d
=MOSW andǫn

d
= semi-Weibull.

Then

F̄Xn(x) =
pe−Ψ(x)

1− (1− p)e−Ψ(x)
.

This establishes that{Xn} is distributed as MOSW. Even ifX0 is arbitrary, it
is easy to establish that{Xn} is stationary and is asymptotically marginally dis-
tributed as MOSW.

The following theorem is regarding akth order autoregressive model.

Theorem 2.6.5. Consider an autoregressive model of order k as follows

Xn =






∈n w.p. p0

min(Xn−1, ∈n) w.p. p1

min(Xn−2, ∈n) w.p. p2
...

min(Xn−k, ∈n) w.p. pk

(2.6.8)
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where0 < pi < 1, (p1+ p2+ · · ·+ pk) = 1− p0. Then{Xn} has stationary marginal
distribution as MOSW if and only if{ǫn} is distributed as semi-Weibull.

The proof follows from the following facts.

F̄Xn(x) = p0 F̄∈n(x) + p1 F̄Xn−1(x) F̄∈n(x) + · · · + pk F̄Xn−k(x)F̄∈n(x)

Under stationary equilibrium,

F̄X(x) = p0 F̄∈(x) + p1 F̄X(x) F̄∈(x) + · · · + pk F̄X(x) F̄∈(x)

This reduces to

F̄X(x) =
p0 F̄∈(x)

[1 − (1− p0) F̄∈(x)]
.

It can be seen that the semi-Weibull distribution is a more general class of
distributions which includes Weibull distribution in the sense that forh(x) = 1,
we haveΨ(x) = xβ.

2.6.4. Marshall-Olkin generalized Weibull distribution

Consider the two-parameter Weibull distribution with survival function

F̄(x) = exp(−(λx)β); x > 0, λ > 0, β > 0.

Then substituting in (5.2.3) we get a new family of distributions, which we shall
refer to as the Marshall-Olkin Generalized Weibull (MOGW) family, whose sur-
vival function is given by

Ḡ(x;α, λ, β) =
α exp[−(λx)β]

1− (1− α) exp[−(λx)β]
, x > 0, λ, β, α > 0.

The probability density function corresponding to G is given by

g(x;α, λ, β) =
αβλβxβ−1 exp(λx)β

exp[(λx)β − (1− α)]2
, x > 0, p, β, α > 0.

The hazard rate is given by

r(x; p, α, β) =
λββ(x)β−1 exp(λx)β

{exp(λx)β − (1− α)}
, x > 0, λ, β, α > 0.

We also explore the nature of the hazard rater(x). It is increasing ifα ≥
1, β ≥ 1 and decreasing ifα < 1, β < 1. If β > 1, then r(x) is initially increasing
and eventually increasing, but there may be an interval where it is decreasing.
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Similarly if β < 1, then r(x) is initially decreasing and eventually increasing
but there is an interval where it is increasing. Whenα = 1, it coincides with
the Weibull distribution. This points out the wide applicability of the MOGW
distribution for modeling various types of reliability data. Theorem 2.6.4 and
theorem 2.6.5 can be extended in this case also.

2.6.5. An AR (1) Model with MOGW marginal distribution

Theorem 2.6.6. Consider the AR (1) structure given by

Xn =

{

ǫn w.p. p
min(Xn−1, ǫn) w.p. (1− p)

(2.6.9)

where{∈n} is a sequence of independent and identically distributed random vari-
ables independent of Xn ; then {Xn} is a stationary Markovian AR (1) process
with MOGW(p, λ, β) marginals if and only if{∈n} is distributed as Weibull dis-
tribution with parametersλ andβ.

Proof 2.6.5. Proceeding as in the case of theorem 2.6.4 if we take

F̄∈(x) = exp(−λx)β,

then it easily follows that

F̄X(x) =
pexp(−λx)β

[1 − (1− p)exp(−λx)β]

=
p

[exp(λx)β − (1− p)]

which is the survival function of MOGW (p, λ, β).
Conversely, if we take,

F̄Xn(x) =
p

[exp(λx)β − (1− p)]
,

it is easy to show that̄F∈n(x) is distributed as Weibull with parametersλ, β and
the process is stationary. In order to establish stationarity we proceed as follows.

AssumeXn−1
d
= MOGW(p, λ, β) and{∈n}

d
=Weibull (λ, β).

Then

F̄Xn(x) =
p[exp(−λx)β]

{1− (1− p) exp(−λx)β}
.
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This establishes that{Xn} is distributed asMOGW(p, λ, β). Even ifX0 is arbitrary,
it is easy to establish that{Xn} is stationary and is asymptotically marginally
distributed asMOGW(p, λ, β) .

Theorem 2.6.7. Consider an autoregressive model Xn of order k with struc-
ture (2.6.8). Then{Xn} has stationary marginal distribution as MOGW if and
only if {ǫn} is distributed as Weibull.

Proof is similar to Theorem 2.6.9
Table 1 showsP(Xn < Xn−1), which are obtained through a Monte Carlo

simulation procedure. Sequences of 100, 300, 500, 700, 900 observations from
MOGWAR (1) process are generated repeatedly for ten times and for each se-
quence the probability is estimated. A table of such probabilities is provided with
the average from ten trials along with an estimate of standard error in brackets.
(see Table 1).

Table 1.P(Xn < Xn−1) for the MOGWAR(1) process whereλ = 1, β = 5.
Sample size

p 200 400 600 800 1000PP
n

0.1 0.7705171 0.7523951 0.7573636 0.745249 0.7589128
(0.002001358) (0.003661458) (0.2899318) (0.002795277) (0.002238917)

0.2 0.6740114 0.6597776 0.6564568 0.6621319 0.6654536
(0.005064845) (0.003381987) (0.003264189) (0.002337129) (0.001765257)

0.3 0.6253248 0.5887756 0.5930888 0.5941391 0.5913183
(0.0551385) (0.002164813) (0.0259571) (0.002407355) (0.003051416)

0.4 0.5027496 0.4992585 0.5230972 0.5237219 0.5153204
(0.005699338) (0.004394413) (0.003465077) (0.001724348) (0.003295175)

0.5 0.4097892 0.4390949 0.4486389 0.4265652 0.4378709
(0.003480096) (0.004124351) (0.003437423) (0.003071082) (0.001833982)

0.6 0.3228981 0.3585286 0.3523585 0.3440362 0.357975
(0.005857569) (0.005020905) (0.003365158) (0.002421289) (0.003009052)

0.7 0.2695292 0.2676458 0.2646377 0.2773244 0.2731059
(0.005099691) (0.003165013) (0.003349412) (0.003459127) (0.003940234)

0.8 0.1873956 0.207557 0.1761628 0.1863542 0.2003661
(0.005808668) (0.006569641) (0.002695993) (0.0033855295) (0.003308759)

0.9 0.1175264 0.1194025 0.1119517 0.1012818 0.1130184
(0.007946155) (0.006232362) (0.005194928) (0.002785095) (0.003507806)
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2.6.6. Case study

In this section, we illustrate the application of the MOGWAR(1) process
in modeling a hydrology data as a case study. The data consists of total daily
weighted discharge (in mm3) of Neyyar river in Kerala at the location Amar-
avilla (near Amaravilla bridge) during 1993. Neyyar is one of the west flowing
rivers in Kerala, located in the Southern most part. It originates from Agasthya-
mala at an elevation of about 1,860 m. above mean sea level. From there it flows
down rapidly along steep slopes in its higher reaches and then winds its way
through flat country in the lower reaches. In the initial stages the course is in
a southwestern direction but at Ottasekharamangalam the river turns and flows
west. It again takes a southwestern course from Valappallikanam upto its fall.
The Neyyar is 56 Km. long and has a total drainage area of 497 sq. Km. It
is a main source of irrigation in southern Kerala and the Neyyar Dam is a main
source of hydroelectric power.

The arithmetic mean of the given data is 0.81. The estimates are obtained as
p = .5 andβ = .7. The calculated value ofχ2 is 0.626, which is significantly
less than the tabled value. Hence MOGW distribution is foundto be a good fit
in this situation. It is found that the simulated MOGWAR (1) process has close
resemblance to the actual data.

Exercises 2.6.

2.6.1. Define a minification process of order 1.

2.6.2. Obtain the class of distributions for which a stationary minification
process is defined.

2.6.3. Develop a minification process with Pareto marginals.

2.6.4. Develop a semi-Weibull minification process.

2.6.5. Obtain the relationship between semi-Weibull and semi-Pareto distri-
butions.

2.6.6. Obtain the innovation structure of a general Marshall-Olkin minification
process.

2.6.7. Develop a bivariate Pareto minification process.
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2.6.8. Develop a bivariate exponential minification process of order.

2.6.9. Derive the hazard rate function of a Marshall-Olkin exponential distri-
bution.

2.6.10. Derive the stationary solution of akth order minification process.
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2.7. On Concomitants of Order Statistics and Con-
comitants of Record Values: Applications in Point
Estimation

[This Section is based on the lectures of Professor P. Yageen Thomas of the Department of

Statistics, University of Kerala.]

2.7.0. Introduction

Order statistics deal with properties and applications of ordered random vari-
ables and their functions. Order statistics play a very important role in statistical
theory as it helps to develop methods of statistical inference which are valid with
respect to a broad class of population distribution functions. In several situations,
methods based on order statistics are proved to be most efficient when compared
with others. These methods are widely accepted due to their simplicity and ro-
bustness, even at the cost of some loss of efficiency.

Since there is no direct extension of order concept to multivariate random
variables, the extension of procedure based on order statistics to such situations
is inapplicable. But however from a random sample arising from a bivariate dis-
tribution, ordering of the values recorded on the first variable generates a set of
random variables associated with the correspondingY variate. These random
variables obtained due to the ordering of theX′s are known as the concomitants
of order statistics. Let (X,Y) be a random vector with joint cumulative distri-
bution function (cd f)F(x, y) and joint probability density function (pd f) f (x, y).
Let (Xi ,Yi), i = 1, 2, ..., n be a random sample drawn from the distribution of
(X,Y). Let Xi:n be thei th order statistic of theX observation, then theY variate
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associated with theXi:n is called the concomitant of thei th order statistic and is
denoted byY[i:n] . It may be noted that Bhattacharya (1974) has independently
developed the above concept of concomitants of order statistics and he called
them as induced order statistics.

Applications of concomitants of order statistics arises inseveral problems
of study. The most important use of concomitants of order statistics arises in
selection procedures whenk(< n) individuals are chosen on the basis of their
X-values. Then the correspondingY-values represent the performance on an as-
sociated characteristic. For example, if the topk out of n bulls, as judged by
their genetic make up, are selected for breeding, thenY[n−k+1:n] , · · · ,Y[n:n] might
represent the average milk yield of their female offspring. As another example,
X might be the score on a screening test andY the score on a latter test. In this
example only the topk performers in the screening test are selected for further
training and their scores on a second test generates the concomitants of order sta-
tistics. These concomitants of order statistics help one toreduce the complexity
of identifying the best performers among a group of individuals.

Suppose the parent bivariate distribution is defined withcd f F(x, y) andpd f
f (x, y), then thepd f of ther th concomitantY[r :n] for 1 ≤ r ≤ n is given by (see,
David and Nagaraja, 2003, p.144 ),

g[r :n](y) =
∫

x
f (y|x) fr :n(x)dx, (2.7.1)

where fr :n(x) is thepd f of the r th order statisticXr :n of theX variate andf (y|x)
is the conditionalpd f of Y givenX = x.
The joint pd f of Y[r :n] andY[s:n] for 1 ≤ r < s ≤ n is given by (see, David and
Nagaraja, 2003, p.144),

g[r,s:n](y1, y2) =
∫ ∞

−∞

∫ x2

−∞
f (y1|x1) f (y2|x2) fr,s:n(x1, x2)dx1dx2, (2.7.2)

where fr,s:n(x1, x2) is the joint pd f of Xr :n andXs:n. From Yang (1977) we get
the expressions for,E(Y[r :n]), Var(Y[r :n]), for 1 ≤ r ≤ n and Cov(Y[r :n] ,Y[s:n]) for
1 ≤ r < s≤ n and are given below.

E(Y[r :n]) = E[E(Y|Xr :n)], (2.7.3)

Var(Y[r :n]) = Var[E(Y|Xr :n)] + E[Var(Y|Xr :n)] (2.7.4)
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and

Cov(Y[r :n] ,Y[s:n]) = Cov[E(Y|Xr :n),E(Y|Xs:n)]. (2.7.5)

There is extensive literature available on the applicationof concomitants of
order statistics such as in: biological selection problem (see, Yeo and David,1984),
ocean engineering (see, Castillo,1988), development of structural designs (see,
Coles and Tawn,1994) and so on. Concomitants of order statistics have been
used by several authors in estimating the parameters of bivariate distributions.
Harrell and Sen (1979) and Gill et al. (1990) have used concomitants of order
statistics to estimate the parameters of a bivariate normaldistribution. Spruill
and Gastwirth (1982) have considered another interesting use of concomitants
in estimating the correlation coefficient between two random variablesX and
Y. Barnett et al. (1976) have considered different estimators for the correla-
tion coefficient of a bivariate normal distribution based on concomitants of order
statistics. The distribution theory of concomitants in thebivariate Weibull distri-
bution of Marshall and Olkin is discussed in Begum and Khan (2000a). Begum
and Khan (2000b) have also developed the distribution theory of concomitants
of order statistics from Gumbel’s bivariate logistic distribution. In section 2, we
consider an application of concomitants of order statistics in estimating a param-
eter of Morgenstern type bivariate uniform distribution.

Let (X1,Y1), (X2,Y2), · · · be a sequence of independent and identically dis-
tributed random variables withcd f F(x, y), (x, y) ∈ R× R. Let FX(x) andFY(y)
be the marginalcd f sof X andY respectively. Let{Rn, n ≥ 1} be the sequence
of upper record values (see, Arnold et al., 1998, p.8) in the sequence ofX′s as
defined by,

Rn = XTn, n = 1, 2, · · ·

whereT1 = 1 andTn = min{ j : X j > XTn−1} for n ≥ 2. Then theY-variate
associated with theX-value, which qualified as thenth record will be called the
concomitant of thenth record and will be denoted byR[n]. Suppose in an ex-
periment, individuals are measured based on an inexpensivetest and only those
individuals whose measurement breaks the previous recordsare retained for the
measurement based on an expensive test; then the resulting data involves con-
comitants of record values. For a detailed discussion on thedistribution theory
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of concomitants of record values see, Arnold et al. (1998) and Ahsanullah and
Nevzorov (2000).

The pd f of nth (n ≥ 1) record value is given by,

gRn(x) =
1

(n− 1)!
[−log(1− FX(x))]n−1 fX(x) (2.7.6)

and the jointpd f of mth andnth record values form< n is given by,

gRm,Rn(x1, x2) =
[−log(1− FX(x1))]m−1

(m− 1)!
[−log(1− FX(x2)) + log(1− FX(x1))]n−m−1

(n−m− 1)!

×
fX(x1) fX(x2)
1− FX(x1)

. (2.7.7)

Thus thepd f of the concomitant ofnth record value is given by

fR[n] (y) =
∫ ∞

−∞
f (y|x)gRn(x)dx,

wheregRn(x) is as defined in (2.7.6) andf (y|x) is the conditionalpd f of Y given
X = x of the parent bivariate distribution.

The joint pd f of concomitants ofmth and nth record values is given by (see,
Ahsanullah and Nevzorov, 2000),

gR[m] ,R[n] (y1, y2) =
∫ ∞

−∞

∫ x2

−∞
f (y1|x1) f (y2|x2)gRm,Rn(x1, x2)dx1dx2,

wheregRm,Rn(x1, x2) is defined by (2.7.7). Some properties of concomitants of
record values were discussed in Houchens (1984), Ahsanullah and Nevzorov
(2000) and Arnold et al. (1998). However, not much work is seen done in the
distribution theory and applications of concomitants of records in statistical in-
ference problems. In subsection 2.7.2, we provide an application of concomitants
of record values in estimating some parameters of Morgenstern type bivariate lo-
gistic distribution.
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2.7.1. Application of concomitants of order statistics in esti-
mating a parameter of Morgenstern type bivariate uni-
form distribution

Scaria and Nair (1999) have discussed the distribution theory of concomitants
of order statistics arising from Morgenstern family of distributions (MFD) with
cd f defined by (see, Kotz et al., 2000, P.52),

F(x, y) = FX(x)FY(y){1+ α(1− FX(x))(1− FY(y))}, −1 ≤ α ≤ 1. (2.7.8)

An important member of theMFD is Morgenstern type bivariate uniform distri-
bution with pd f given by,

F(x, y) =
xy
θ1θ2

{

1+ α

(

1− x
θ1

) (

1− y

θ2

)}

, 0 < x < θ1, 0 < y < θ2; −1 ≤ α ≤ 1.

(2.7.9)
Now we derive the Best Linear Unbiased Estimator (BLUE) of the parameter
θ2 involved in (2.7.9) using concomitants of order statistics(see, Chacko and
Thomas, 2004).

Let Y[r :n] , r = 1, 2, · · · , n be the concomitants of order statistics of a random
sample of sizen drawn from (2.7.9). Then thepd f of Y[r :n] and the jointpd f of
Y[r :n] andY[s:n] are obtained as,

g[r :n](y) =
1
θ2

[

1+ α
n− 2r + 1

n+ 1

(

1− 2y
θ2

)]

, 1 ≤ r ≤ n. (2.7.10)

and

g[r,s:n](y1, y2) =
1

θ2
2

[

1+ α
n− 2r + 1

n+ 1

(

1−
2y1

θ2

)

+ α
n− 2s+ 1

n+ 1

(

1− 2y2

θ2

)

+ α2

(

n− 2s+ 1
n+ 1

− 2r(n− 2s)
(n+ 1)(n+ 2)

)

(2.7.11)

×
(

1− 2y1

θ2

) (

1− 2y2

θ2

)]

, 1 ≤ r < s≤ n.
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From (2.7.10) and (2.7.11) we get the means, variances and covariances of con-
comitants of order statistics as follows:

E[Y[r :n] ] = θ2

[

1
2
− αn− 2r + 1

6(n+ 1)

]

= θ2ξr :n, (2.7.12)

where

ξr :n =
1
2
− αn− 2r + 1

6(n+ 1)
.

Var[Y[r :n] ] = θ
2
2

[

1
12
−
α2(n− 2r + 1)2

36(n+ 1)2

]

= θ2
2ρr,r :n, (2.7.13)

where

ρr,r :n =
1
12
− α

2(n− 2r + 1)2

36(n+ 1)2

and

Cov[Y[r :n] ,Y[s:n] ] = θ
2
2

α2

36

[

(n− 2s+ 1)
(n+ 1)

− 2r(n− 2s)
(n+ 2)(n+ 1)

− (n− 2r + 1)(n− 2s+ 1)
(n+ 1)2

]

= θ2
2ρr,s:n, (2.7.14)

where

ρr,s:n =
α2

36

[

(n− 2s+ 1)
(n+ 1)

− 2r(n− 2s)
(n+ 2)(n+ 1)

− (n− 2r + 1)(n− 2s+ 1)
(n+ 1)2

]

.

Let Y [n] = [Y[1:n] , · · · ,Y[n:n] ]′ be the vector of concomitants. Then from (2.7.12)
we can write

E(Y [n]) = θ2ξ,

where

ξ = [ξ[1:n] , · · · , ξ[n:n] ]
′.
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Then from (2.7.13) and (2.7.14), the variance covariance matrix of Y [n] is given
by

D(Y [n]) = Gθ2
2,

where

G = ((ρr,s:n)).

If α is known then (Y [n] , θ2ξ, θ
2
2G) is a generalized Gauss-Markov setup and

hence the BLUE (̂θ2 of θ2) is given by,

θ̂2 = (ξ′G−1ξ)−1ξ′G−1Y [n]

and the variance of̂θ2 is given by,

Var(θ̂2) = (ξ′G−1ξ)−1θ2
2.

It is clear thatθ̂2 is a linear function of the concomitantsY[r :n] r = 1, 2, · · · , n.
Hence we can writêθ2 =

∑n
r=1 arY[r :n] , wherear , r = 1, 2, · · · , n are constants.

It is to be noted that the possible values ofα are in the interval [−1, 1]. If the
estimateθ̂2 of θ2 for a givenα = α0 ∈ [−1, 1] is evaluated, then one need not
consider the estimate forθ2 for α = −α0 as the coefficients of the estimate in this
case can be obtained from the coefficients ofθ̂2 for α = α0. This property can be
easily observed from the following theorem:

Theorem 2.7.1. Let Y[r :n] , r = 1, 2, · · · , n be the concomitants of order
statistics of a random sample(Xi ,Yi), i = 1, 2, · · · , n arising from (2.7.9) for a
givenα = α0 ∈ [−1, 1]. Let the BLUEθ̂2(α0) of θ2 for givenα0 based on the
concomitants Y[r :n] , r = 1, 2, · · · , n be written asθ̂2(α0) =

∑n
r=1 arY[r :n] . Then the

BLUE of θ̂2(−α0) of θ2 whenα = −α0 is given by

θ̂2(−α0) =
n∑

r=1

an−r+1Y[r :n] with Var[θ̂2(−α0)] = Var[θ̂2(α0)].

Proof 2.7.1. From (2.7.13) and (2.7.14) for 1≤ r ≤ nwe haveρr,r :n = ρn−r+1,n−r+1:n

and for 1≤ r < s ≤ n, we haveρr,s:n = ρn−s+1,n−r+1:n. MoreoverG is symmetric.
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Therefore we can write for anyα ∈ [−1, 1], G = JGJ, whereJ is an ann × n
matrix given by,

J =





0 · · · 0 1
0 · · · 1 0
· · · · · ·
1 · · · 0 0





Again from (2.7.12) we have for anyα0 ∈ [−1, 1],

ξr :n(α0) =
1
2
− α0

n− 2r + 1
6(n+ 1)

= ξn−r+1:n(−α0).

Thus

ξ(−α0) = Jξ(−α0).

Therefore, ifα = α0 is changed toα = −α0 then the estimatêθ2(−α0) is given
by,

θ̂2(−α0) = (ξ′(−α0)G
−1ξ(−α0))

−1ξ′(−α0)G
−1Y[n]

= (ξ′(α0)JG−1Jξ(α0))
−1ξ′(α0)JG−1Y[n](−α0).

SinceJJ = I andJGJ= G, we get,

θ̂2(−α0) = (ξ′(α0)G
−1ξ(α0))

−1ξ′(α0)G
−1JY[n]

=

n∑

r=1

arY[n−r+1:n] .

That is the coefficient ofY[r :n] in θ̂2 for α = α0 is the same as the coefficient of
Y[n−r+1:n] in θ̂2 for α = −α0. Similarly we get

Var[θ̂2(−α0)] = Var[θ̂2(α0)].

Thus the theorem is proved.

We have evaluated the coefficientsar of Y[r :n] , 1 ≤ r ≤ n in θ̂2 and Var(θ̂2)
for n = 2(1)10 andα = 0.25(0.25)0.75 and are given in table 2.7.1. In order to
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obtain the efficiency of our estimatêθ2, we introduce a simple unbiased estimate
of θ2 as,

θ̃2 = Y[1:n] + Y[n:n] ,

with variance given by,

Var(θ̃2) = θ
2
2

[

1
6
+
α2

18
+

(

2n
(n+ 1)(n+ 2)

−
n− 1
n+ 1

)]

.

We have obtained the ratioVar(θ̂2)
Var(θ̃2)

as a measure of the efficiencye1 = e(θ̂2|θ̃2)

of our estimatorθ̂2 relative to the unbiased estimatorθ̃2 for n = 2(1)10 and
α = 0.25(0.25)0.75. It can be seen that the efficiency of our estimator̂θ2 of
θ2 is relatively very high when compared with̃θ2. An advantage of the above
method of obtaining the BLUE ofθ2 is that with the expressions forE[Y[r :n] ] and
Cov[Y[r :n] ,Y[s:n] ] one can also obtain without any difficulty the BLUE ofθ2 even
if a censored sample alone is available.

2.7.2. Application of concomitants of record values in estimat-
ing some parameters of Morgenstern type bivariate lo-
gistic distribution

In this section we (see, Chacko and Thomas, 2005) consider the concomi-
tants of record values arising from Morgenstern Family of Distributions with
cd f given in (2.7.1). We further derive the jointpd f of concomitants ofmth and
nth (m < n) record values arising fromMFD. Based on these expressions we
also derive the explicit expression for the product momentsof concomitants of
record values.

An important member of theMFD is the Morgenstern Type Bivariate Logis-
tic Distribution (MT BLD) and itscd f is given by,
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FX,Y(x, y) =

[

1+ exp

{

−
x− θ1

σ1

}]−1 [

1+ exp

{

−
y − θ2

σ2

}]−1

×


1+ α





1−

[

1+ exp

{

−
x− θ1

σ1

}]−1









1−

[

1+ exp

{

−
y − θ2

σ2

}]−1







 ,

(2.7.15)

(x, y) ∈ R2; (θ1, θ2) ∈ R2; σ1 > 0, σ2 > 0, −1 < α < 1

Suppose in certain complicated experiments significance isattributed to the val-
ues of the secondary measurement made by an accurate expensive test on indi-
viduals having record values with respect to the measurement made preliminarily
on them by an inexpensive test. Now we derive (see, Chacko andThomas 2005)
the BLUE’s of θ2 andσ2 involved in theMT BLD defined by (2.7.15) whenα
is known and also obtained the BLUE ofθ2 whenσ2 andα are known based on
concomitants of firstn record values.

The jointcd f of the standardMT BLD is obtained by making the transformation
u = x−θ1

σ1
andv = y−θ2

σ2
in (2.7.15) and is given by,

FU,V(u, v) =
[

1+ exp(−u)
]−1 [

1+ exp(−ν)
]−1

{

1+ α
exp(−u− v)

[1 + exp(−u)][1 + exp(−v)]

}

.

(2.7.16)
Let (Ui ,Vi), i = 1, 2, · · · be a sequence of independent observations drawn from
(2.7.16). LetR∗[n] be the concomitant of thenth record valueR∗[n] arising from
(2.7.16). Then thepd f f∗[n](v) of R∗[n] and the jointpd f f∗[m,n](v1, v2) of R∗[m] and
R∗[n] for m< n are given below,

f ∗[n](v) =
[

1+ exp(−v)
]−2 exp(−v)

{

1+ α(1− 21−n)

[

1− exp(−v)
1+ exp(−v)

]}

. (2.7.17)

and form< n,
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f ∗[m,n](v1, v2) =
[

1+ exp(−v1)
]−2 [

1+ exp(−v2)
]−2 exp(−v1 − v2)

×
[

1+ α {2I1(m, n) − 1}
(

1− exp(−v1)
1+ exp(−v1)

)

+ α {2I2(m, n) − 1}
(

1− exp(−v2)
1+ exp(−v2)

)

+ α2 {4I3(m, n) − 2I1(m, n) − 2I2(m, n) + 1}

×
(

1− exp(−v1)
1+ exp(−v1)

) (

1− exp(−v2)
1+ exp(−v2)

)]

,

where,

I1(m, n) =
1

(m− 1)!(n−m− 1)!

n−m−1∑

r=0

(−1)n−m−r−1

(

n−m− 1
r

)

×




(n− 1)!
n− r − 1

− (n− r − 2)!r! + (n− r − 2)!
n−r−2∑

s=0

1
s!

(r + s)!
2r+s+1



 ,

(2.7.18)

I2(m, n) =
(n− 1)!

(m− 1)!(n−m− 1)!

(

1− 1
2n

) n−m−1∑

r=0

(−1)n−m−r−1

(

n−m− 1
r

)

1
n− r − 1

(2.7.19)

and

I3(m, n) =
1

(m− 1)!(n−m− 1)!

n−m−1∑

r=0

(−1)n−m−r−1

(

n−m− 1
r

)[ (n− 1)!
n− r − 1

(

1− 1
2n

)

− (n− r − 2)



r!

(

1− 1
2r+1

)

−
n−r−2∑

s=0

(r + s)!
s!

(

1
2r+s+1

− 1
3r+s+1

)



]

.

(2.7.20)

Thus the means, variances and covariances of concomitants of first n record
values (forn ≥ 1 ) arising from (2.7.16) are given by,
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E[R∗[n] ] = α(1− 21−n) = µn (say), (2.7.21)

Var[R∗[n] ] =
π2

3
− α2(1− 21−n)2

= νn,n (say) (2.7.22)

and form< n,

Cov[R∗[m] , R∗[n] ] = α
2[{4I3(m, n) − 2I1(m, n) − 2I2(m, n) + 1} − (1− 21−m)(1− 21−n)]

= Vm,n (say), (2.7.23)

Let (Xi ,Yi) i = 1, 2, · · · be a sequence of independent observations drawn
from a population withcd f defined by (2.7.15). If we writeu = x−θ1

σ1
andv = y−θ2

σ2

then we haveXi = θ1 + σ1Ui andYi = θ2 + σ2Vi for i = 1, 2, · · · . Then by using
(2.7.21), (2.7.22) and (2.7.23) we have forn ≥ 1,

E[R[n] ] = θ2 + σ2µn, (2.7.24)

Var[R[n]] = σ
2
2νn,n (2.7.25)

and form< n,

Cov[R[m] , R[n]] = σ
2
2νm,n, (2.7.26)

Clearly from (2.7.20), (2.7.21) and (2.7.22) it follows that µn, νn,n andνm,n

are known constants providedα is known. SupposeR[n] = (R[1] ,R[2] , · · · ,R[n])
denote the vector of concomitants of firstn record values. Then from (2.7.24) to
(3.7.26), we can write

E[R[n] ] = θ21+ σ2µ, (2.7.27)

where 1 is a column vector ofn ones andµ = (µ1, · · · , µn)′. Then the variance-
covariance matrix ofR[n] is given by,

D[R[n] ] = Hσ2
2, (2.7.28)

whereH = ((νi, j)). If α involved inµ andH are known, then (2.7.27) and (2.7.28)
together defines a generalized Gauss-Markov setup and then (proceeding as in
David and Nagaraja 2003, p. 185) the BLUE’s ofθ2 andσ2 are given by
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θ̂2 =
µ′H−1(µ1′ − 1µ′)H−1

∆
R[n] (2.7.29)

and

σ̂2 =
1′H−1(1µ′ − µ1′)H−1

∆
R[n] , (2.7.30)

where

∆ = (µ′H−1µ)(1′H−11)− (µ′H−11)2

The variances of the above estimators are given by

Var(θ̂2) =

(

µ′H−1µ

∆

)

σ2
2, (2.7.31)

and

Var(σ̂2) =

(

1′H−11
∆

)

σ2
2. (2.7.32)

Clearly θ̂2 andσ̂2 can be written aŝθ2 =
∑n

i=1 biR[i] andσ̂2 =
∑n

i=1 ciR[i] wherebi

andci, i = 1, 2, · · · , n are constants.

We have evaluated, the coefficientsbi andci of R[i] , 1 ≤ i ≤ n in θ̂2 and
σ̂2; Var(θ̂2) and Var( ˆσ2) for n = 2(1)10 andα = 0.25(0.25)0.75 and are given
in table 2.7.2 and table 2.7.3 respectively. In order to compare the efficiencies of
our estimatorŝθ2 andσ̂2 we introduce two simple unbiased estimators ofθ2 and
σ2 based on the concomitants of the first andnth records as given below,

θ̃2 = R[1]

and

σ̃2 =
R[n] − R[1]

α(1− 21−n)
.

Clearly from (2.7.23) it follows that̃θ2 is unbiased forθ2 andσ̃2 is unbiased for
σ2. By using (2.7.24), (2.7.25) and (2.7.26), we get the variances ofθ̃2 andσ̃2

as,
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Var[θ̃2] =
π2

3
σ2

2

and

Var[σ̃2] =
1

α2(1− 21−n)2

[

(
2π2

3
) − α2(1− 21−n)2

− 2α2{4I3(1, n) − 2I1(1, n) − 2I2(1, n) + 1}
]

.

We have obtained the variance ofθ̃2, the relative efficiency Var(θ̃2)
Var(̂θ2)

of θ̂2 relative to

θ̃2 for n = 2(1)10;α = 0.25(0.25)0.75 and are provided in table 2.7.2. Again we
have obtained the variance of ˜σ2, the relative efficiency Var(σ̃2)

Var(σ̂2) of σ̂2 relative to
σ̃2 for n = 2(1)10; α = 0.25(0.25)0.75 are provided in table 2.7.3.

Remark 2.7.1. We can see that the BLUÊθ2 of θ2 does not depend much on the
association parameterα but the BLUEσ̂2 of σ2 depends very much onα and our
assumption is thatα is known. Therefore in the situation whereα is unknown
we introduce a rough estimator forα as follows, in order to make our estimators
θ̂2 andσ̂2 useful for theα unknown situation.

For MT BLD the correlation coefficient between the two variates is given
by ρ = 3

π2α. If r is the simple correlation coefficient betweenRi andR[i] , i =
1, 2, 3, · · · then a rough moment type estimator forα is obtained by equatingr
with the population correlation coefficientρ and is obtained as,

α̂ =






−1, if r ≤ − 3
π2

1, if r ≥ 3
π2

r π
2

3 , otherwise.

Remark 2.7.2. From the tables we can see that the efficiency of the BLUE of
θ2, the location parameter ranges from 1 to 1.25 and the efficiency of the BLUE
of σ2 the scale parameter ranges from 1 to 1.75. It is clear that the efficiency of
the BLUE ofσ2 is better than the efficiency of the BLUE ofθ2. However, one
should keep in mind that competitors are naive estimators because those are the
only available estimators to obtain the relative efficiency of our estimators in this
situation.
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