CHAPTER 2

STOCHASTIC PROCESSES AND TIME SERIES
MODELLING

[This chapter is based on the lectures of Dr. K. K. Jose, Department of Statistics,
St. Thomas College, Pala, M.G. University, Kottayam.)]

2.0. Introduction

In this Chapter we discuss some elementary theory of StacHai®cesses
and Time Series Modelling. Stochastic processes are intextlin Section 2.1.
Some modern concepts in distribution theory which are afjueat use in this
chapter are discussed Section 2.2. Section 2.3 deals \aitiorstry time se-
ries models. In Section 2.4,we consider a structural lahip and some new
autoregressive models. Section 2.5 deals with tailed pes= In section 2.6,
semi-Weibull time series models with minification struetare discussed.

2.1. Stochastic Processes

The theory of stochastic processes is generally regardéak alyynamic part
of Probability Theory, in which one studies a collection ahdom variables
indexed by a parameter. One is observing a stochastic redenever one ex-
amines a system developing in time in a manner controlledblyabilistic laws.
In other words, a Stochastic Process can be regarded as a@mcahgbstraction
of a phenomenon developing in nature according to some piiadie rules.

If a scientist is to take account of the probabilistic natoféhe phenome-
non with which he is dealing, he should undoubtedly make tislesotheory of
stochastic processes. The scientist making measurenmehis laboratory, the
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94 2. STOCHASTIC PROCESSES AND TIME SERIES MODELLING

meteorologist attempting to forecast weather, the corsystems engineer de-
signing a servomechanism, the electrical engineer degjgaicommunication

system, the hardware engineer developing a computer rnietta economist

studying price fluctuations and business cycles, the séugisb studing earth-

guake vibrations, the neurosurgeon studying brainwawerdscthe cardiologist
studying the electro cardiogram etc. are encounteringlenod to which the

theory of stochastic processes can be applied. Financidelinay and insur-

ance mathematics are emerging areas where the theory bastacprocesses is
widely used.

Examples of stochastic processes are provided by the gemesaes of pop-
ulations such as a bacterial colony, life length of itemsasrdiferent renewals,
service times in a queuing system, waiting times in front gskavice counter,
displacement of a particle executing Brownian motion, nandf events during
a particular time interval, number of deaths in a hospitatlifferent days, volt-
age in an electrical system duringleérent time instants, maximum temperature
in a particular place on fferent days, deviation of an artificial satellite from its
stipulated path at each instant of time after its launchgthentity purchased of
a particular inventory on ¢lierent days etc. Suppose that a scientist is observing
the trajectory of a satellite after its launch. At randomdimtervals, the scientist
is observing whether it is deviating from the designed pathat and also the
magnitude of the deviation.

X(t,w)

Figure 2.1
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Let X(t, w) denote the altitude of the satellite from sea-level at tinvberew
is the outcome associated with the random experiment. HHereahdom experi-
ment is noting the weather conditions with regard to tempeeapressure, wind
velocity, humidity etc. These outcomes may vary continbojusst like that of
a random experiment. Hen¢&(t,w);t € T;w € Q} gives rise to a stochastic
process.

Thus a stochastic process is a family of random variablesxied by a pa-
rametert, taking values from a sét called the index set or parameter space. It
may be denoted b{X(t,w);t € T,w € Q}. A more precise definition may be
given as follows.

Definition 2.1.1. A stochastic process is a family of indexed random vari-
ables{X(t,w);t € T;w € Q} defined on a probability spac(3, P) whereT is
an arbitrary set.

There are many ways of visualizing a stochastic process.

(i) For each choice dfe T, X(t, w) is a random variable.
(ii) For each choice ab € Q, X(t, w) is a function oft.
(iii) For each choice ab andt, X(t, w) is a number.
(iv) In general it is an ensemble (family) of functiokét, w) wheret andw can
take diferent possible values.

A
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X(t,w) w2

wl

Y

Figure 2.2

Hereafter we shall use the notatidift) to represent a stochastic process,
omitting w, as in the case of random variables. It is convention toXjsand
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X(t) according as the indexing parameter is discrete or cootisu

The values assumed by the r.v. (random varialiig) are called states and
the set of all possible values ¥{t), is called the state space of the process and is
denoted by5. The state space can be discrete or continuous. \Bheuiscrete,
by a proper labeling, we can take the state-space as the satwhl numbers
namelyN = {1, 2, ---}. It may be finite or infinite.

The main elements distinguishing stochastic processethaneature of the
state spac& and parameter spade and the dependence relations among the
random variableX(t). Accordingly there are four types of processes.

Type 1. Discrete parameter discrete processes

In this case botls andT are discrete. Examples are provided by the number
of customers reported in a bank counter onrifi@ay, then generation size of
a population, the number of births in a hospital on tieday etc. There may
be multidimensional processes also. For example condiggpriocessX,, Y,)
whereX, andY, are the number of births and deaths in a municipality omthe
day.

Type 2: Continuous parameter discrete processes

In this caseT is continuous an® is discrete. Examples constitute the num-
ber of persons in a queue at timehe number of telephone calls during (0
the number of vehicles passing through a specific junctiomdy0, t) etc.

Type 3. Discrete parameter continuous processes

In this case€T is discrete ané is continuous. Examples are provided by the
renewal time for the™" renewal, life length of th@" renewed bulb, service time
for the n™ customer, waiting time on the" day to get transport, the maximum
temperature in a city on th&" day etc.

Type 4: Continuous parameter continuous processes

In this case botfiT andS are continuous. Examples are constituted by the
voltage in an electrical system at tinhethe blood pressure of a patient at time
t, the ECG level of a patient at tintethe displacement of a particle undergoing
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Brownian motion at time, the speed of a vehicle at tihghe altitude of a satel-
lite at timet, etc.

For more details see Karlin and Taylor (2002), Papoulis (20®ledhi (2004),
Medhi (2006). Feller (1996) gives a good account of infinikesible distribu-
tions. Ross (2002) gives a good description of stochasticgsses and their
applications. Medhi (2004) gives a good introduction totteory and applica-
tion of stochastic processes.

Consider a computer system with jobs arriving at random tgaim time,
queuing for service, and departing from the system afteicGecompletion. Let
Ny be the number of jobs in the system at the time of departuteeddtcustomer
(after service completion). The stochastic prodégsk = 1,2, - - -} is a discrete-
parameter, discrete-state process. A realization of tlisgss is shown in figure
2.3
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Figure 2.3

Next letX(t) be the number of jobs in the system at tim&hen{X(t);t € T}
Is a continuous parameter discrete-state process. Aaéalizis given in figure
2.4.
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i

Let W, be the time that th&" customer has to wait in the system before
receiving service. Thef\W; k € T} is a discrete-parameter, continuous-state
process, see figure 2.5

Figure 2.4
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Figure 2.5
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Finally, let Y(t) be the cumulative service requirement of all jobs in the sys
tem at timet. Then{Y(t)} is a continuous parameter continuous-state proces, see
figure 2.6.

A

Figure 2.6

2.1.1. Classical types of stochastic processes

We now describe some of the classical types of stochasteepses charac-
terized by diferent dependence relationships ami(g.

2.1.2. Processes with stationary independent increments

Consider a stochastic proceps(t);t € T} whereT = [0,0). Then the
process{X(t)} is called a process with independent increments if the nando
variablesX;, — X, X, — Xy, -+, X, — X;,_, are independent for all choices of
to, t1, - , 1y such thato <t <--- <t

If the distribution of the increment&(t; + h) — X(t)) depends only o, the
length of the interval and not on the particular titnghen the process is said to
have stationary increments. Hence for a process with sttyancrements, the
distributions of the incremendqto+h)—X(to), X(t1+h)—X(t1), X(t,+h)—X(tp), - - -
etc are the same and depend onlyhpirrespective of the time pointg, ty, - - -

If a procesgX(t)} has both independent and stationary increments, then it is
called a process with stationary independent increments.
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Result: If a procesgX;;t € T} has stationary independent increments and has
finite mean, therk(X;) = my + Mt wheremy = E(Xg) andm, = E(X;) — my, E
denoting the expected value.

2.1.3. Stationary processes

A stochastic proceds} is said to be stationary in the strict sense (SSS) if the
joint distribution function of the families of the randomnables [X;, +n, - - - X, +h]
and [X,, X, - - - , X;,] are the same for ali > 0 and arbitrary selectiong t, - - - , t,
from T. This condition asserts that the process is in probalulkesjuilibrium and
that the particular times at which one examines the proaessfano relevance.
In particular the distribution oX; is the same for eadh

Thus stationarity of a process implies that the probakslstructure of the
process is invariant under translation of the time axis. anocesses encoun-
tered in practice exhibit such a characteristic. So, gtatiyp processes are ap-
propriate models for describing many phenomena that occoommunication
theory, astronomy, biology, economics etc.

However strict sense stationarity is seldom observed iotjp@a Moreover,
many important questions relating to a stochastic procas$e adequately an-
swered in terms of the first two moments of the process. Toerefe relax the
condition of strict sense stationarity to describe wealssestationarity (WSS),
also known as wide sense stationarity.

A Stochastic procesgX;} is said to be wide sense stationary if its first two
moments (mean function and variance function) are finiteiaddpendent of
and the covariance function Co%( X, ) is a function only ofs, the time diter-
ence, for alt. Such processes are also known as covariance stationagarcs
order stationary processes. A process, which is not sttypm any sense, is
said to be evolutionary.

2.1.4. Gaussian processes and stationarity

If a process{X;} is such that the joint distribution ofX( , X,, X;,) for all
ty, to, - - - , ty is multivariate normal, thefX;} is called a Gaussian (normal) pro-
cess. For a Gaussian process weak sense stationarity @hdestise stationarity
are identical. This follows from the fact that a multivagatormal distribution is
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completely determined by its mean vector and variancer@vee matrix. Here
we need only mean, variance and covariance functions. leraotiords, if a
Gaussian proceds} is covariance stationary, then it is strictly stationarg an
vice versa.

Example 2.1.1. Let{Xq;n > 1} be uncorrelated random variables with mean 0 and
variance 1. Then

Oif n#m
1if n=m

Cov(Xn, Xm) = {

Hence CovKp, Xin) is a function ofn — mand so the process is covariance stationary. If
Xn are identically distributed also, then the process isttritationary.

Example 2.1.2. Consider the Poisson procg3§t)} where

Pix =m = e @Wn_o1...

Clearly,

E[X(t)] = at
Var[X(t)] = At which depends oh

Therefore the process is not stationary. It is evolutionary

Example 2.1.3. Consider the procegX(t)} whereX(t) = A; + Aot whereAq, A, are
independent r.v.'s withe(A;) = &, Var(Aj) = o-iz,i =1,2. Obviously

E[X(1)] = a1 + axt
Var[X(t)] = 0% + o5t?
Cov[X(s) [X(®)] = o2 + sto3.
These are functions @fand hence the process is evolutionary.
Example 2.1.4. Consider the procegX(t)} whereX(t) = Acosuwt + Bsinwt, where
A andB are uncorrelated r.v.'s with mean 0 and variance l@aigla positive constant.

In this caseE[X(1)] = 0 and Var[X(t)] = 1, Cov[X(t), X(t + h)] = cos(hw). Hence
the above process is covariance stationary. This procesdlésl a sinusoidal process.
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Example 2.1.5. Consider the procegX(t)} such that

@ n=12.
(1+at) :

Obviously

E[X()] = Z NPIX(t) = ]

(at)n 1
(1 + at)2 Z 1+ at)

2 2 (atn !
E[X3()] = Z” TrapT

at (at)"2
T @+an? {Z n(n - )(1 + at)}
Z (at)n 1
(1+at™!
= 2at +1,

which is a function of. Hence the process is not stationary. Itis an evolutioneoggss.

Example 2.1.6. Consider the Bernoulli process described below.

Consider a sequence of independent Bernoulli trials witiesamues as success and
failure. Let

)1 if the outcome is a success
n — .
0 otherwise

Then the proceséX,;n > 1} has states 0 and 1 and the process is called a Bernoulli
process. Let us defing/y} by Y, = 0 forn = 0andY, = Xy +--- + X5,n > 1. Then

the proces$Yy,; n > 0} has the set of non-negative integers as the state spacér,Tike
binomially distributed withP[Y, = K] = nCep*(1 — p)"*;k = 0,1,2,---n; wherep is

the probability of success in a trial.

Example 2.1.7. (The random telegraph signal process )
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Let{N(t),t > 0} denote a Poisson process, anddgbe independent of this process,
and be such tha(Xo = 1) = P(Xo = —1) = 1. DefineX(t) = Xo(-1)NO. Then{X(t); t >

0} is called a random telegraph signal process. In this Pisét) = k] = e‘”t% for
k=12---. Clearly

E[X(®)] = E[Xo(-1)N®]
= E[X0]E[(-1)N¥] = 0
Cov[X(t), X(t + 9)] = E[X(t)X(t + 9)]
_ E[Xg(_l)N(t)+N(t)+s]
_ E[Xg].E[(_1)2N(t)+N(t)+s+N(t)—N(t)]
= 1E[(~1)2NO (~1)Nt+9-N(O)]
= E[(-1NO1E[(-1)N9]
= 1E[(-1)"C]

e s k
— Z(_l)k e! (/lls)
k=0 )

k

—21S.

=€ s> 0.

Also

Var[X(t)] = 1 < oo.
Hence the above process is covariance stationary.

For an application of the above random telegraph signakidena particle moving
at a constant unit velocity along a straight line and supploaecollisions involving this
particle occur at Poisson rafie Also suppose that each time the particl@eats from a
collision, it reverses direction. Xy represents the initial velocity of the particle, then
its velocity at timet is given byX(t) = Xo(-1)NO. If we takeD(t) = fot x(s)ds, therD(t)
represents the displacement of the particle during (@ can be shown thdD(t);t > 0}
is also a weakly stationary process.

Example 2.1.8. Consider an Autoregressive ProcéXg} whereXy = Zg and X, =
pXn_1+ Znn > 1ol < 1 whereZy, Zy,25,--- are uncorrelated random variables with
E(Z,) =0;n>0and
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Then
Xn = pXn-1 + Zn

Therefore

n+m

n
CoV[Xn, Xnem] = COV[Z 0"z, Z oz,
i=0 i=0

n
— an—lpmm—icov(zi’ Z)
i=0

n

1 i
+
1+p2 ;p

Therefore this process is also covariance stationary.

Now we consider a special type of Gaussian Process, whidatisrsary in both
senses and has a wide range of applications.

2.1.5. Brownian processes

We consider a symmetric random walk in which in each time tiéte is
chance for one unit step forward or backward. Now suppogewhapeed up this
process by taking smaller and smaller steps in smaller aatlesntime intervals.
In the limit we obtain the Brownian motion process. It is alsmwn as the
Wiener process, after Wiener who developed this conceptsieri@s of papers
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from 1918 onwards. Actually it originated in Physics, as tioéion associated
with the random movements of a small particle immersed igudior gas. This
was first discovered by the British botanist Robert Browne Pnocess can be
more precisely developed as follows:

Suppose that, in the random walk, in each time interval oatiom At we
take a step of sizax either to the left or to the right with equal probabilities. |
we letX(t) denote the position at timtethen

X(t) = AX [X]_ + -+ X(ALt)]
where

- +1 ifthei™ step is to the right
" |-1 ifitis to the left

andﬁ is the integer part oi;t We assume tha('s are independent witR(X;

1) = P(X = -1) = 1. SinceE(X) = 0,Var(X) = 1 we haveE[X(t)]

0, Var[X(t)] = (Ax)?[L]

Now we consider the case wherx — 0 andAt — 0 in such a way that
E[X(t)] = 0 and Var[(t)] — o?t. The resulting proces¥(t)} is such thaf(t)
is normally distnbuted with mean and variancer?t, and has independent, sta-
tionary increments. This leads us to the formal definitioa &rownian motion
process.

Definition 2.1.2. A stochastic procesgX(t);t > 0} is said to be a Brow-
nian motion process if ()X(0) = 0 (i) {X(t)} has stationary independent
increments (iii) for every > 0, X(t) is normally distributed with mean 0 and
varianceot.

Wheno = 1, the process is called a standard Brownian motion. Any Brow
nian motionX(t) can be converted to a standard Brownian motion by taking
B(t) = X0 If {B(t)} is a standard Brownian motion axdt) = o-B(t) + ut, then
X(t) is normally distributed with meaat and variancéo?. Then{X(t);t > 0} is
called a Brownian motion with drift cdgcientu.
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If {X(t);t > O} is a Brownian motion process with drift cheient u and
variance parameter?t, then{Y(t);t > 0} whereY(t) = exp[X(t)] is a called a
geometric Brownian motion process. It is useful in modebhgtock prices over
time when the percentage changes are independent anccalgndistributed.

If {X(t);t > O} is a Brownian motion process then eachXdt), X(t,), - - - can
be expressed as a linear combination of the independentahoamdom vari-
ablesX(ty), X(t2) — X(ty), X(t3) — X(tp), - - - X(tn) — X(tn_1). Hence it follows that a
Brownian motion is a Gaussian process.

Since a multivariate normal distribution is completelyatatined by the mar-
ginal mean values and covariance values, it follows thadrdstrd Brownian mo-
tion could also be defined as a Gaussian process h&yX)] = 0 and fors > t,

Cov[X(s), X(1)] = Cov[X(s), X(s) + X(t) — X(9)]
= CoV[X(s), X(9)] + CoVv[X(s), X(t) — X(9)]
= Var[X(9)]
= so?.
Let{X(t); t > O} be a standard Brownian motion process and consider the pro-
cess values between 0 and 1 conditionaXgh) = 0. Consider the conditional
stochastic procesgX(t); 0 > t > 1/X(1) = 0}. Since this conditional distribution

is also multivariate normal it follows that this conditidmaocess is a Gaussian
process. This conditional process is known as the Browniiggeé.

Brownian motion theory is a major topic in fluid dynamics arak lappli-
cations in aeronautical engineering in the designing ob@anes, submarines,
satellites, space crafts etc. It also finds applicationsienicial modelling.

2.1.6. Markov chains

An elementary form of dependence between values,ah successive tran-
sitions, was introduced by the celebrated Russian prabsAilA. Markov, and
is known as Markov dependence. Markov dependence is a fodepmgndence
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which states thaX,,; depends only oiX, when it is known and is independent
of X1, Xn_2, - - - , Xo. This implies that the future of the process depends only on
the present, irrespective of the past. This property is knagsyMarkov property.

In probabilistic terms, the Markov property can be stated as

P[Xn+1, = InealXo = 10, Xg =1, ++ , Xno1 = o1, Xn = 1]
= I::'[Xn+1 = in+1|xn = in]

for all statedy,iq,--- ,ins1 and for alln. This is called Markov dependence of
the first order.

A Stochastic procesgX,} with discrete state space and discrete parameter
space is called a markov chain if for all stategi, iy, - - ,in.1 We have

P[Xns1 = JIXo =0, Xa = i1, -+, Xpoq = In-1, Xp = ]
= P{Xps1 = jIXn = 1] for all n.

The probability that the system is in stgtat the end ofif + 1) transitions given
that the system was in staitat the end of transitions is denoted by’ and is
called a one-step transition probability. In general thabability depends on |
andn. If these probabilities are independennpfve say that the Markov chain is
homogeneous and has stationary transition probabilitiese we consider only
such chains. Thus

P = P[Xn1 = X, = i]

In a similar manner we can considexstep transition pribabilities denoted by
p{" where

P = P[Xnim = j1%n = ]

If the state space of a Markov chain consists of only a finit@lper of states, it
is called a finite Markov chain. Otherwise we call it an infnMarkov chain.

The square matirf consting of the eIemem#.l) for all possible statelsand
j is called one -step transition probability matrix of the ich& herefore

P=[p.
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Similarly the square matri™ consisting of the elements” for all possible
values of the stateisand j is called the m-step transition matrix of the chain.
Hence

P = [p{"].
Obviously we havé® = P and

Now we considerpgo) = P[X, = j]. It may be noted thap{” describes the

probability distribution ofX,. The vectorp® = (p, p©, ... (°> .-) is called
the initial probability vector.
Similarly p{” = P[X, = j] gives the probability distribution of,. The vector

p® = (p, p(l”), p”---) is called then-step absolute probability vector.

Theorem 2.1.1. A Markov chain is completely defined by its one-step tran-
sition probability matrix and the initial probability veat.

Proof 2.1.1. Consider

PXo=ilXy = j,Xo =K+, Xp1 =1, Xy = §
= P[Xo = i] P[Xy = jIXo = 1] P[X2 = KIXo =i, Xy = ]

PiXh=9Xo =1, , Xpo1 =T}
= P(Xo =)P(Xy = jIXo = 1) P(Xo = KXy = ]) - - - P(Xp = X1 = 1)
= pp- - p?

This shows that any finite dimensional joint distributiom tbe chain can be
obtained in terms of the initial probabilities and one-dtapsition probabilities,
and this establishes the thorem.

Theorem 2.1.2. (Chapman-Kolmogorov Equations)

The transition probabilities of Markov chains satisfy tlgpation
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1, i=]
(men) _ (m) (N 0 _ ]

or equivalently,

PO =pP" and P™" = pMmp®O

(i) Computation of absolute probabilities

Consider
p” = PX = il
P(X, = j) = ZP(Xn =}, Xo = 1)
= D P(Xo = DP(Xn = X0 = )
Therefore

(n) _ (0) (M)
Z pp

(i) Inverse transition probabilities

109

Then-step inverse transition probabilities denotedﬂ/is defined as

o = P(Xm = j|Xnem = )

form> 0,n > 0. They describe the past behaviour of the process when the
present is given. But transition probabilities describe fiiture behaviour

of the process when the present is given.

Now

P(Xm = jlxn+m = i)F)(Xmm = |)
= P(Xnim = 11X = [)P(Xq = )
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Therefore
. . I:)(Xn+m = i|Xm = j)P(Xm = J)
P(Xm = 1IXpem =1) = .
( m Jl N+m ) P(Xn+m — |)
Hence
() (M)
m _ Pi P >0
j P_(n+m)

whenever the denominator is non zero.
(iii) Taboo probabilities

In this case the movement of the system to some specifieds skate
prohibited. For example consider

PX2 =, X1 #kXo=1)=P
(the system reaches stgtat the end of 2 transitions without visiting state
k given that the system started from stgte

This is usually denoted byP®.

J Using the Chapman-Kolmogorov equa-
tions, we have

2 1 1
kpi(j) = Z p|(| )p|(j)
1£k
It may be noted thatP? is different fromP[X, = j|Xo = i, X; # K]
which is equal tdP[ X, = j|X; # K].

Similarly P[X, = ], X; # k. 1[Xo = i] may be denoted byP'?.
Obviously,

(2) _ (1) (1)
I,kPij - Z piv pvj

vk,
Problems relating to taboo probabilities can be solved awstabove.
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Exercises 2.1.

2.1.1. Give two examples each of the four types of stochastic peases
2.1.2. Define a stochastic process with stationary independergnments.

2.1.3. Foraprocess with stationary independent increments ek (X;) =
My + Mt wheremg = E(Xo) andm, = E(X;) — my.

2.1.4. Whatis a Poisson process ? Show that it is evolutionary.
2.1.5. Give an example of a strictly stationary process.
2.1.6. Give an example of a covariance stationary process.

2.1.7. Let{X,} be uncorrelated r.v.'s witk(X,) = 0,V(X;) = 1. Show that
{X,} is strictly stationary.
et

2.1.8. Consider a Poisson proceggt)} wherep[x(t) = n] = —=;n =
0,1,--- Find E(x(t)) and Var(t)). Is the process stationary ?

2.1.9. Consider a Poisson proceisgt)} as above. Leky be independent of
X(t) such thatp(xo = 1) = p(X = -1) = 3. defineN(t) = xo(-1)N®. Find
E(N(t)) and Cov{(t), N(t + 9)).

2.1.10. Define a Brownian process and show that it is an approximafitime
random walk process.

2.1.11. Obtain an expression for the covariance function of a Brawmnotion
process.

2.1.12. What is geometric Brownian motion process? Discuss its Bses

2.1.13. Consider the numbers 2, 3,4,5. We select one number out of these
at random and note it a§,. Then select a number at random fron2 1. - X; and
denote it as{,. The process is continued. Write down the one step and two ste
transition matrices of the cha{iX,}.

2.1.14. 4 white and 4 red balls are randomly distributed in two urnshsd
each urn contains 4 balls. At each step one ball is selecteshdom from each
urn and the two balls are interchanged. Kgtdenote the number of white balls
in the first urn at the end of tha" interchange. Then write down the one-step
transition matrix and the initial distribution. Also find
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() P[Xs=4X,=4] (i) P[X2=3]

(iiy P[X;=4, Xo=3, X3=2, X4=1] (iv) P[Xs = 3%z = 4]

2.1.15. If X, denotes the maximum face value observedh itosses of a
balanced die with faces marked213,4,5,6 write down the state space and
parameter space of the procé¢Xxs}. Also obtain the transition matrix.

2.2. Modern Concepts in Distribution Theory

2.2.1. Introduction

In this Section we discuss some modern concepts in disiibtiteory which
will be of frequent use in this chapter.

Definition 2.2.1. Infinite divisibility.

A random variablex is said to be infinitely divisible if for every € N, there
exists independently and identically distributed rand@mablesy,, yon, - - -, Ynn
such thatx 2 Yin +Yon + - + Ynn, where2 denotes equality in distributions. In
terms of distribution functions, a distribution functiénis said to be infinitely
divisible if for every positive integen, there exists a distribution functiof,
suchthaft = F, x F, x --- x F,,, wherex denotes convolution.

ntimes

This is equivalent to the existence of a characteristic ioncp,(t) for every
n € N such thatp(t) = [¢n(t)]" whereg(t) is the characteristic function of

Infinitely divisible distributions occur in various contsxin the modelling of
many real phenomena. For instance when modelling the anaduatn x that
falls in a period of lengthl', one can dividex into more general independent
parts from the same family. That is,

d
X=X, + Xepty + 00+ X7ty

Similarly, the amount of money paid by an insurance company during a year
must be expressible as the sum of the corresponding amgums. . ., Xsp in
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each week, That is,
Xg X1+ Xo+ -+ Xso.

A large number of distributions such as normal, exponeitaibull, gamma,
Cauchy, Laplace, logistic, lognormal, Pareto, geomeasson, etc., are infin-
itely divisible. Various properties and applications ofiiitely divisible distri-
butions can be found in Laha and Rohatgi (1979) and Stel@&B(1

2.2.2. Geometric infinite divisibility

The concept of geometric infinite divisibility (g.i.d.) wagroduced by Kle-
banovet al. (1984). Arandom variablgis said to be g.i.d. if for everp € (0, 1),
there exists a sequence of independently and identicatyilolited random vari-
ablesX”, X, ... such that

d N(p)
y= > P 2.2.1)

and

PIN(p) =k} = p(L- )", k=12
wherey, N(p) and xﬁm, ] = 1,2,... are independent. The relation (2.2.1) is
equivalent to

w®) = > [0 p(1-p)
j=1

__ pg(®)
1-(1-py()
wheregp(t) andg(t) are the characteristic functions pand xﬁp) respectively.

The class of g.i.d. distributions is a proper subclass oty divisible dis-
tributions. The g.i.d. distributions play the same rolegadmetric summation’
as infinitely divisible distributions play in the usual suration of independent
random variables. Klebanaet al. (1984) established that a distribution func-

tion F with characteristic functiog(t) is g.i.d. if and only if ex;{l - %} is
¥
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infinitely divisible. Exponential and Laplace distribut®are obvious examples
of g.i.d. distributions. Pillai (1990b), Mohaet al. (1993) discuss properties of
g.i.d. distributions. It may be noted that normal distribatis not geometrically
infinitely divisible.

2.2.3. Bernstein functions

A C>—function f from (0, o) to R is said to be completely monotone if
nf
(—1)”3—)(n > O for all integersn > 0.
A C*—functionf from (0, o) to Ris said to be a Bernstein function,fi{x) >
n

0,x> 0and 61)”O|—)dq < O for all integers > 1. Thenf is also referred to as a
function with complete monotone derivative (c.m.d).

A completely monotone function is positive, decreasing aonvex while
a Bernstein function is positive, increasing and concaee Berg and Forst
(1975)).

Fujita (1993) established that a cumulative distributiomdtionG with G(0) =
0 is geometrically infinitely divisible, if and only i& can be expressed as

G(X) = i(—l)’”lwn*([o, x), x>0
n=1

whereW™(dx) is then-fold convolution measure of a unique positive measure

W(dx) such that
1

— = e SW(dy9), x>0
f(¥) fo
wheref(X) is a Bernstein function, satisfying the conditions

I)lqrg f(x)=0 and xll@f(x) = o0,

A distribution is said to have complete monotone derivaifiits distribution
function F(x) is Bernstein. Pillai and Sandhya (1990) proved that thesctd
distributions having complete monotone derivative is gpprasubclass of g.i.d.
distributions. This implies that all distributions with oplete monotone den-
sities are geometrically infinitely divisible. It is easier verify the complete
monotone criterion and using this approach we can estatblesgeometric infi-
nite divisibility of many distributions such as Pareto, gaaand Weibull.
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The class of non-degenerate generalized gamma convauwiitin densities
of the form given by

M
f)=cx [ @+, x>0
j=1

is geometrically infinitely divisible for < g < 1. Similarly distributions having
densities of the form

f(X) = o expcx); O<a<1
is g.1.d. for O< g8 < 1. Also the Bondesson family of distributions with denstie
of the form

M

u@:cﬁ4[1

Nj -
1+ Z Cijajk]
=1 k=1

is g.i.d. for 0< 8 < 1, aj < 1 provided all parameters are strictly positive (see
Bondesson(1992)).

2.2.4. Self-decomposability

Let{x,; n> 1} be a sequence of independent random variables, aflg,}et
be a sequence of positive real numbers such that

lim {nkaxP{lxkl > bye} =0 for everye > 0.

nN—oo <kK<n
Lets, = Ypy % for n > 1. Then the class of distributions which are the weak
limits of the distributions of the sumis;'s, — a,; n > 1 wherea, andb, > 0
are suitably chosen constants, is said to constitute tlaSsch distributions are
called self-decomposable.

A distribution F with characteristic functiog(t) is called self - decompos-
able, if and only if, for everyr € (0, 1), there exists a characteristic function
@ (t) such thatp(t) = p(at)e,(t) for te R

Clearly, apart fronx = 0, no lattice random variable can be self-decomposable.
All non-degenerate self-decomposable distributions laselately continuous.

A discrete analogue of self-decomposability was introdune Steutel and
Van Harn (1979). A distribution oN = {0, 1, 2, ...} with probability generating
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function (p.g.f.) P(2) is called discrete self~decomposable if and onlp(#) =
P(1-a+ a2)P,(2; 14 < 1,a € (0, 1) whereP,(2) is a p.g.f.

If we defineG(2) = P(1 - 2), thenG(2) is called the alternate probability
generating function (a.p.g.f.). Then it follows that a disition is discrete self—
decomposable if and only &(2) = G(a2)G,.(2); |12 < 1, a € (0, 1) whereG,(2)
is some a.p.g.f.

2.2.5. Stable distributions

A distribution functionF with characteristic functiop(t) is stable if for ev-
ery pair of positive real numbebs andb,, there exist finite constanégsandb > 0

such thatp(bit)e(bst) = ¢(bt)e? wherei = V-1.

Clearly, stable distributions are in classwvith the additional condition that
the random variableg,; n > 1 in Subsection 4.3.4 are identically distributed
also.F is stable if and only if its characteristic function can bemssed as

In(t) = iat — ctP[1 + ivw(t, B)sgn 1]
whereq, 8, y are constants with > 0,0< 8 < 2,|y| < 1and

_[tanZ; p=1
w(t.f) = {g Int; B=1

The valuec = 0 corresponds to the degenerate distribution, @n€ 2 to the
normal distribution. The case= 0,8 = 1 corresponds to the Cauchy law (see
Laha and Rohatgi (1979)).

2.2.6. Geometrically strictly stable distributions

A random variabley is said to be geometrically strictly stable (g.s.s.) if for
anyp € (0, 1) there exists a constant= ¢c(p) > 0 and a sequence of independent
and identically distributed random variablgsys,, . .. such that

whereP{N(p) = k} = p(1 - p)**; k= 1,2,... andy, N(p) andy;; j=1,2,...
are independent.



2.2. MODERN CONCEPTS IN DISTRIBUTION THEORY 117

If o(t) is the characteristic function gf then it implies that

pe(ct)
=1 pgy PO
Among the geometrically strictly stable distributionse thaplace distribution
and exponential distribution possess all moments. A gexcady strictly stable
random variable is clearly geometrically infinitely dioge.

A non—degenerate random varialplés geometrically strictly stable if and
only if its characteristic function is of the form

o(t) = 1/ [1 + AJt|* exp (—igea sgn t)]

where O< @ < 2,2 > 0,16] < min(1, 2/a — 1). Whena = 2, it corresponds
to the Laplace distribution. Thus it is apparent that whehrary summation of
random variables is replaced by geometric summation, tipéatcea distribution
plays the role of the normal distribution, and exponentiatrtbution replaces
the degenerate distribution (see Klebarbwal(1984)).

2.2.7. Mittag-Leffler distribution

The Mittag-Letler distribution was introduced by Pillai (1990a) and has cu-
mulative distribution function given by

_ g LR .
Fo() = Zr(“k) 0<a<1;x>0.

.. 1
Its Laplace transform is given by(t) = m; 0<a<1;t>0; and the

distribution may be denoted by M&J. Herea is called the exponent. It can be
regarded as a generalization of the exponential distohburti the sense that= 1
corresponds to the exponential distribution. The Mittaafler distribution is
geometrically infinitely divisible and belongs to cldsslt is normally attracted
to the stable law with exponeat

If uis exponential with unit mean angdis positive stable with exponent
thenx = u'/?y is distributed as Mittag-Ler (). If uis Mittag-Leffler (o) and

v is exponential and andv are independent, then= — is distributed as Pareto
v

. . I 1
type Il with survival functionF,(x) = P(X > X) = m; O<acx<l
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For the Mittag-Léfler distribution,E(x°) exists for 0< ¢ < a and is given
by

I'1-6/a)l(1+6/a)
I'(1-90) '
A two parameter Mittag-L#ler distribution can also be defined with the

E(X) =

corresponding Laplace transforp(t) =
by ML(«, 1).

Jayakumar and Pillai (1993) considered a more general chlkd semi—
Mittag-Leffier distribution which included the Mittag-liger distribution as a

special case. A random variabtevith positive support is said to have a semi—
Mittag-Leffier distribution if its Laplace transform is given by

1
1+n(t)
wherern(t) satisfies the functional equatigft) = an(bt) where O< b < 1 anda
is the unique solution adb* = 1. It may be denoted by SMkj. Then it follows
thatn(bt) = b*h(t) whereh(t) is a periodic function i with period —In b. When

(07
h(t) is a constant, the distribution reduces to the Mittadgikee distribution. The
semi—Mittag-LeHer distribution is also geometrically infinitely divisibknd
belongs to clask.

; 0 < a < 1. It may be denoted
AY + 1

¢(t) =

2.2.8. a—Laplace distribution

Thea—Laplace distribution has characteristic function givgf) = ”n |t|w;
O<a <2 -0<t< oo Thisis also called Linnik’s distribution. Pillai (1985)
refers to it as the—Laplace distribution since = 2 corresponds to the Laplace
distribution. It is unimodal, geometrically strictly stakand belongs to clads

It is normally attracted to the symmetric stable law with exenta. Also
2 T(1+2)r(1-2)r(1+06)/2)
Va T(1-3)

E(X°) =

where0O<d<a;0<a < 2.
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If uandv are independent random variables where exponential with unit
mean and is symmetric stable with exponeat thenx = u** is distributed as
a—Laplace. Using this result, Devroye (1990) develops aordlyn for gener-
ating random variables having-Laplace distribution.

Pillai (1985) introduced a larger class of distributionethsemi-e—Laplace
distribution, with characteristic function given by
1
wheren(t) satisfies the functional equatiojft) = an(bt) for 0 < b < 1 and

a is the unique solution ol = 1, 0 < a@ < 2. Hereb is called the order
anda is called the exponent of the distribution. Bf andb, are the orders of

the distribution such thait— is irrational, thery(t) = cJt|*, wherec is some

constant. Pillai (1985) establlshed that, for a semiaplace distribution with
exponenty, E|x° exists for 0< ¢ < «. It can be shown that

1
1+ [tle[1 — Acos k In [t])]

o(t) =

wherek = —, 0 < b < 1 is the characteristic function of a semitaplace
distribution for suitable choice gk anda < 1.

The semia—Laplace distribution is also geometrically infinitely dille
and belongs to clads. It is useful in modelling household income data. Mo-
hanet al(1993) refer to it as a geometrically right semi—stable law.

2.2.9. Semi—Pareto distribution

The semi—Pareto distribution was introduced by Pillai @99A random
variablex with positive support has semi—Pareto distribut®R«, p) if its sur-
vival function is given byF,(X) = P(X > %) = 1= WO) wherey(Xp) satisfies the

functional equatiompy(x) = y(p**x); 0< p< 1, a > 0.

The above definition is analogous to that of the semi-staedefined by
Levy (see Pillai (1971)). It can be shown thatx) = x*h(x) whereh(x) is

periodic in Inx with period_ln—zza. For example ih(x) = exp[B cosg In x)], then
it satisfies the above functional equation wth- exp(-2r) andy(X) monotone
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increasing with O< 8 < 1. The semi—Pareto distribution can be viewed as a more
general class which includes the Pareto type Il distrioutivheny(x) = cx*,
wherec is a constant.

Exercises 2.2.

2.2.1. Examine whether the following distributions are infiniteliyisible.
() normal (i) exponential (iii) Laplace (iv) Cauchy
(v) binomial (vi) Poisson (vii) Geometric (viii) negativerfomial

2.2.2. Show that exponential distribution is geometric infiniteisible and
self decomposable.

2.2.3. Examine whether Cauchy distribution is self-decomposable

2.2.4. Showthat (i) Mittag-Léer distributionis g.i.d and belongs to class L.
(i) a-Laplace distribution is g.i.d and self-decomposable.

2.2.5. Give a distribution which is infinitely divisible but not gdi

2.2.6. Show that AR(1) structure, = axX,1 + &,;a € (0,1) is stationary
Markovian if and only if{x,} is self decomposable.

2.2.7. Show that geometric and negative binomial distribution diserete
self-decomposable.

2.2.8. Consider the symmetric stable distribution with charastierfunction
o(t) = e, Is it self-decomposable?
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2.3. Stationary Time Series Models

2.3.1. Introduction

A time series is a realization of a stochastic process. Ierotlords, a time
series{x}, is a family of real-valued random variables indexed kyZ, where
Z denotes the set of integers. More specifically, it is refbéteas a discrete
parameter time series. The time serfgg is said to be stationary if, for any
ti,t,..,theZ,anyke Z,andn=1,2,...,

I:th,Xt2 ..... Xtny (Xl’ XZ’ ety Xn) = FX¢1+k,X12+k ..... th+k(xl9 X2? KIS ) Xn)

whereF denotes the distribution function of the set of random \@es which
appear as gfices. This is called stationarity in the strict sense.

Less stringently, we say a procgss} is weakly stationary if the mean and
variance ofx remain constant over time and the covariance between any two
valuesx; andxs depends only on the timefterence and not on their individual
time points.

{%} is called a Gaussian process if, forgjin > 1 the set of random variables
{X,» X,» - - - » %, } has a multivariate normal distribution.

Since a multivariate normal distribution is completely gfied by its mean
vector and covariance matrix, it follows that for a Gausgieotess weak station-
arity implies complete stationarity. But for non—Gausgarcesses, this may not
hold.

2.3.2. Autoregressive models

The era of linear time series models began with autoregeessodels first
introduced by Yule in 1927. The standard form of an autoregjve model of
orderp, denoted by AR(p), is given by

p
xt:Zajxt_,-+et; t=0,+1,+2, ...
j=1

where{g} are independent and identically distributed random véegballed
innovations an@;, p are fixed parameters, wit, # 0.
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Another kind of model of great practical importance in thpresentation
of observed time series is the moving average model. Thelatdrform of a

q
moving average model of ordgrdenoted by MAg), is given byx; = ), bje_j +
j=1

&; t € Z wherebj, g are fixed parameters, withy, # O.

To achieve greater flexibility in the fitting of actually olpged time series, it
is more advantageous to include both autoregressive anthghaverage terms
in the model. Such models called autoregressive—movingageemodels, de-
noted by ARMA (p,q), have the form

p q
xt:Zajxt_j+Zbket_k+et; teZ
j=1 k=1

Where{aj}}”:1 and{bk}ﬂz1 are real constants called parameters of the model. It can
be seen that an AR(p) model is the same as an ARMA(p,0) modeh &hA(q)
model is the same as an ARMA(0,q) model.

With the introduction of various non—Gaussian and nondalimaodels, the
standard form of autoregression was widened in severa¢cesp

A more general definition of autoregression of org@ds given in terms of
the linear conditional expectation requirement that

p
E(Xt|Xt_1, X2, - - ) = Z aJXt_J
j=1

This definition could apply to models which are not of the éndorm (see
Lawrance (1991)).

2.3.3. A general solution

We consider a first order autoregressive model with innoweagiven by the
structural relationship

0 with probability p
- 231
e {xn_l with probability 1- p (2.3.1)

wherep € (0, 1) and{e,} is a sequence of independent and identically distributed
(i.i.d.) random variables selected in such a way thgtis stationary Markovian
with a given marginal distribution functiof.
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Let ¢(t) = E[e™™] be the Laplace-Stieltjes transform »f Then (2.3.1)
gives
Px (1) = ¢, (D[P + (1 — Py, (V)]
If we assume stationarity, this simplifies to

dx()
p+ (1~ p)ex(t)

Pe(t) = (2.3.2)

or equivalently

Pg.(t)
1-(1-p)ee(t)
When{x,} is marginally distributed as exponential, it is easy to $ed (2.3.1)
gives the TEAR(1) model.

We note that(t) in (2.3.2) does not represent a Laplace transform always.
In order that the process given by (2.3.1) is properly defitteele should exist
an innovation distribution such thaf(t) is a Laplace transform for afi € (0, 1).
To establish the main results we need the following lemmas.

(Pillai (1990b)) LetF be a distribution with positive support adt) be its
Laplace transform. Theh is geometrically infinitely divisible if and only if

1
1+ y(t)

(2.3.3)

¢x(t) =

¢(t) =

wherey (t) is Bernstein withy(0) = O.
Now we consider the following definition from Pillai (1990b)

Definition 2.3.1. For any non-vanishing Laplace transfori(t), the
function
U(t) = m — 1 is called the third characteristic.

Lemma 2.3.1. Lety(t) be the third characteristic @f(t). Thenpy(t) is a third
characteristic for alp € (0, 1) if and only if¥(t) has complete monotone deriva-
tive andy(0) = 0.

Thus we have the following theorem.
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Theorem 2.3.1. ¢.(t) in (2.3.2) represents a Laplace transform for all @
(0,2) if and only if ¢«(t) is the Laplace transform of a geometrically infinitely
divisible distribution.

This leads to the following theorem which brings out the rolegeometri-
cally infinitely divisible distributions in defining the nefirst order autoregres-
sive model given by (2.3.1).

Theorem 2.3.2. The innovation sequenc¢e,} defining the first order autore-
gressive model given by

N 0 with probability p
"7 I X1 with probabilityl — p

where pe (0,1), exists if and only if the stationary marginal distributia
Xn IS geometrically infinitely divisible. Then the innovatidistribution is also
geometrically infinitely divisible.

Proof2.3.1. Suppose that an innovation sequefwgesuch that the model (2.3.1)
is properly defined exists. This implies tha(t) in (2.3.3) is a Laplace transform
forall p € (0,1). Then from (2.3.3)

dx(t) = poe[1 — (1 - p)pe(t)] ™
= p(- )" pe]"
n=1

showing that the stationary marginal distributiorxgis geometrically infinitely
divisible. Conversely, ifx, has a stationary marginal distribution which is ge-

ometrically infinitely divisible, thenpy(t) =

1
1+ 000 wherey(t) has complete

monotone derivative angl(0) = 0. Then from (2.3.2) we gef.(t) = 1+ :)lp(t)’

which establishes the existence of an innovation distebutvhich is geometri-
cally infinitely divisible.
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2.3.4. Extension to a k-th order autoregressive model

In this section we consider an extension of the model give(2i8:1) to the
k-th order. The structure of this model is given by

0 with probability py
_1 Wwith probabilit
Xn = €n t+ Xn ' P T (234)

Xn—k  With probability px

wherep; € (0,1) fori =0,1,...,kandpy + p1 + --- + px = 1. Taking Laplace
transforms on both sides of (2.3.4) we get

k
Po+ ) Pt (t)]
i=1

Assuming stationarity, it simplifies to

k

Po + Z pi¢x(t)]
i=1

$(t)[Po + (1 — Po)px(t)]-

D, (1) = ¢, (1)

¢x(t) = ¢e(t)

This yields

Px(t)
0= T - P
which is analogous to the expression (2.3.2).
It may be noted thak = 1 corresponds to the first order model wph=
po. From (2.3.5) it follows that the results obtained in Sect®l1.2 hold good
for the k-th order model given by (2.3.4). This establishes the irgyae of
geometrically infinitely divisible distributions in autgressive modelling.

(2.3.5)

2.3.5. Mittag-Leffler autoregressive structure

The Mittag-Letler distribution was introduced by Pillai (1990a) and has

1 .
Laplace transformp(t) = oo 0 < a < 1. Whena = 1, this corresponds to the
exponential distribution with unit mean. Jayakumar anthRji1993) considered
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the semi—Mittag-L#&ler distribution with exponent. Its Laplace transform is of

1
1+ ()

the form wherer(t) satisfies the functional equation

n(t) = anbt), O<b<1 (2.3.6)

anda is the unique solution adb* = 1 where O< @ < 1. Then by Lemma 2.3.1
of Jayakumar and Pillai (1993), the solution of the funcailoeguation (2.3.6) is

n(t) = t*h(t) whereh(t) is periodic in Int with perlod—ﬁ. Whenh(t) = 1,
n(t) = t* and hence the Mittag-ltier distribution is a special case of the semi-
Mittag-Leffier distribution. It is obvious that the semi—Mittag{ter distribution
is geometrically infinitely divisible.

Now we bring out the importance of the semi-Mittagfiier distribution in

the context of the new autoregressive structure given I8;12. The following
theorem establishes this.

Theorem 2.3.3. For a positive valued first order autoregressive process
satisfying (2.3.1) the stationary marginal distributioh)g and ¢, are identical
except for a scale change if and only fsxare marginally distributed as semi-
Mittag-Leffler.

Proof 2.3.2. Suppose that the stationary marginal distributiong.ande, are
identical. This impliesp.(t) = ¢«(ct) wherec is a constant. Then from (2.3.2)
we get

¢x(t)
P+ (1~ p)¢x()

in (2.1.7) we get

px(ct) = (2.3.7)

Writing ¢«(t) = 1+ 10

1 B 1
1+ n(ct) 1+ pn(t)

so that

n(ct) = pn(t)

By choosingc = pY/¢, it follows that x, is distributed as semi—Mittag-iféer
with exponentr.
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Conversely, we assume that the stationary marginal disioib of x, is semi-
Mittag-Leffier. Then from (2.3.2)

1 1
1+ pn(t) — 1+mn(pYet)’
This establishes that, d pY*M, where{M,} are independently and identically
distributed as semi—Mittag-lfier.

It can be easily seen that the above result is true in the ddbke k-th order
autoregressive model given by (2.3.4) also.

e(t) =

Exercises 2.3.

2.3.1. Define an AR(1) process and obtain the stationary solutionhfe
distribution of{e,} when{x,} are exponentially distributed.

2.3.2. Show that an AR(1) model can be expresse¥@gc) model.
2.3.3. Consider a new AR(1) model with exponential innovations.

2.3.4. Examine whether two-parameter Gamma distribution is .g.gting
conditions if any.

2.3.5. Show that exponential distribution is a special case ofdditetler
distribution.

2.3.6. Obtain the stationary distribution ¢&,} in the AR(1) structurex, =
ax,_1 + €, a € (0, 1) when{x,} follows exponential distribution. Generalize it to
the case of Mittag-L&ler random variables.

2.3.7. Obtain the structure of the innovation distribution{xf,} follows a-
Laplace distribution wherg, = ax,_1 + €,. Deduce the case when= 2.

2.3.8. Show that if{x,} follows Cauchy distribution thefe,} also follows a
Cauchy distribution in the AR(1) equatiof = ax,_1 + &n.
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2.4. A Structural Relationship and New Processes

In this section we obtain the specific structural relatigp&ietween the sta-
tionary marginal distributions of, ande, in the new autoregressive model.

Fujita (1993) generalized the results on Mittagfler distributions and ob-
tained a new characterization of geometrically infinitelyigible distributions
with positive support using Bernstein functions. It wasabished that a distri-
bution functionG with G(0) = 0 is geometrically infinitely divisible if and only
if G can be expressed in the form.

G() = ) (-D)™A"W™([0,X]); x>0, 1>0 (2.4.1)
n=1
whereW™(dx) is then-fold convolution measure of a unique positive measure
W(dX) on [0, o) such that

1 —
f)
for some Bernstein functiofi such that limy,(x) = 0 and lim,. f(X) = oo.

foo e SW(ds); x>0 (2.4.2)
0

Then the Laplace transform @&(x) is Using this result we get the

A
A+ f(t)
following theorem.

Theorem 2.4.1. The k-th order autoregressive equation given by (2.3.4) de-
fines a stationary process with a given marginal distribatianction F(x) for
Xy if and only if K(X) can be expressed in the form

(o)

Fo(X) = Z(—l)”*l/l”W”*([O, X)) x>0, 1>0. (2.4.3)

n=1
Then the innovationg:,} have a distribution function Kx) given by

Fe(X) = i(—l)”*l(/l/ Po)"W™ ([0, X]); x>0, 1>0, (2.4.4)
n=1

where p € (0, 1) and W™ is as in(2.4.1).
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Proof 2.4.1. We have from Theorem 2.3.1 thia(x) is geometrically infinitely
divisible. Then (2.4.3) follows directly from Fujita (1993

Now by substitutings4(t) = in (2.1.2) we get

A+ f(t)
A (1/po)
€ t = =
0 = @ @Weo + 10
which leads to (2.4.4). This completes the proof.

The above theorem can be used to construct various autesagrenodels
under diterent stationary marginal distributions fey.

For example, the TEAR(1) model of Lav)\</nrance and Lewis (19&i) be
obtained by taking (t) = t. ThenW™ ([0, X]) = P} so thatF,(x) = 1 - e and
Fo(X) = 1 - eWPX_ [f we taked = 1 andf(t) ='t%; 0 < @ < 1 we can obtain
an easily tractable first order autoregressive Mittagiee process denoted by
TMLAR(1). In thi * = —

(2). In this caseN™ ([0, X]) @+ 1)

A = 1 and f(t) satisfying the functional equatioi(t) = af(bt) wherea = b™;
O0<b<1, 0<ac<1,wecanobtain an easily tractable first order autoregressi
semi—Mittag-Léfer process denoted by TSMLAR(2).

. In a similar manner by taking

2.4.1. The TMLAR(1) process

An easily tractable form of a first order autoregressive &fjttefler process,
called TMLAR(1), is constituted byx,} having a structure of the form

0 with probability p

2.4.5
Xn-1 With probability 1-p ( )

Xn = pl/a/Mn +{

wherep € (0,1); 0 < a < 1 and{M,} is independently and identically dis-

tributed as Mittag-L#&ler with exponentr and xg d M;. The model (2.4.5) can
be rewritten in the form

X1 = PYMp + InXa-1 (2.4.6)
where{l,} is a Bernoulli sequence such tli,, = 0) = pandP(l, = 1) =1-p.
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If in the structural form (2.4.5), we assume tlist,} are distributed as semi—
Mittag-Leffler with exponentr, then{x,} constitute a tractable semi—Mittag-
Leffler autoregressive process of order 1, called TSMLAR(1) hBobdels are
Markovian and stationary. It can be seen that the TMLAR(bEpss is a special
case of the TSMLAR(1) process since the Mittagiler distribution is a special
case of the semi—Mittag-Ier distribution.

Now we shall consider the TSMLAR(1) process and establiatits strictly
stationary and Markovian, provided is distributed as semi—Mittag-Ifier. In
order to prove this we use the method of induction.

Suppose thax,_; is distributed as semi—Mittag-liger (@). Then by taking
Laplace transforms on both sides of (2.4.5), we get

(1) = Sw, (P D[P + (1~ P)hx, - (V)]

1 1
= Trr PP
_ 1 1+pn)
S l4ppt) 1+

1
T 1n0)

Hencex, is distributed as semi—Mittag-Ifiger with exponentr.

If %o is arbitrary, then also it is easy to establish thq} is asymptotically
stationary. Thus we have the following theorem.

Theorem 2.4.2. The first order autoregressive equation

Xn = PY My + InXa1; n=12,..., pe(0,1)

where {l,} are independent Bernoulli random variables such that
P(l, = 0) = p = 1-P(I, = 1) defines a positive valued strictly stationary
first order autoregressive process if and onlyi¥,,} are independently and iden-
tically distributed as semi—Mittag-lféer with exponen& and » d M.

Remark 2.4.1. If we consider characteristic functions instead of Laplaaas-
forms, the results can be applied to real valued autoreigesprocesses. Then
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the role of semi—Mittag-L@ler distributions is played by semi—Laplace distri-
butions introduced by Pillai (1985).

2.4.2. The NEAR(1) model

In this section we consider a generalized form of the firsepaditoregressive
equation. The new structure is given by

(2.4.7)

. 0 with probabilityp
=@ Yax., with probability 1- p

where 0< p < 1; 0 < a < 1 and{g,} is a sequence of independent and identi-
cally distributed random variables such thef} have a given stationary marginal
distribution. Letgy(t) = E[e7] be the Laplace-Stieltjes transform xf Then
(2.4.7) gives

b (1) = ¢, (D[P + (1 - P)x,, (aD)]
Assuming stationarity, it simplifies to

ox(1)
P+ (1- p)¢x(at)’

Whenp = 0 and O< a < 1, the model (2.4.7) is the standard first order
autoregressive model. Then the model is properly defineddf @nly if the
stationary marginal distribution of, is self-decomposable. When= 1, 0 <
p < 1 the model is the same as the model (2.4.1), which is propkefiped if
and only if the stationary marginal distribution ®f is geometrically infinitely
divisible. Whena = 0 or p = 1, X, ande, are identically distributed.

Now we consider the case whare (0, 1] andp € (0, 1], but not simultane-
ously equal to 1. Lawrance and Lewis (1981) developed an NEARodel with

g(t) = (2.4.8)

exponential {) marginal distribution foix,. Thengy(t) = o1 and substitution
in (2.4.8) gives

A+ at A
A+t A+ pat

e(t) = (2.4.9)
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which can be rewritten as
l1-a A 1-pa A
ot) = (+55)+ .
l1-pa/\a+t 1-pa [\4+ pat
Hencee, can be regarded as a convex exponential mixture of the form

E,  with probability {=%
= 2.4.10
n {paEn with probability &2 ( )

1-pa

where{E,}; n=1,2,... are independent and identically distributed as exponen-
tial (1) random variables. Another representation docan be obtained from
(2.4.9) by writing

mayzk+(1—@5%?uﬁglm} (2.4.11)

Then writing w.p. for ‘with probability’e, can be regarded as the sum of two
independent random variablesandv, where

u =0 w-pa (2.4.12)
E, w.p.1l-aand

vn = pak,
where{E,}; n = 1,2,... are exponentialA). It may be noted that when
p = 0, the model is identical with the EAR(1) process, of Gaved apwis
(1980). Thus the new representationepseems to be more appropriate, when
NEAR(1) process is regarded as a generalization of the EABR(Less.

2.4.3. New Mittag-Leffler autoregressive models

Now we construct a new first order autoregressive procesdWitag-Leffler
marginal distribution, called the NMLAR(1) model.
The structure of the model is as in (2.4.7) and the innovataam be derived

. 1 . L
by substitutings4(t) = m; O<a<1in(2.4.8). This gives
1+ a*t” 1
() = . .
¢<(0) 1+te 1+ avpte
Hence the innovations, can be given in the form
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. e 2.4.13
pa*M, with probablllty% ( )

{Mn with probability 22
En =
where{M,} are Mittag-Ldfler (@) random variables.

An alternate representation gfis ¢, = U, + v, Whereu, andv, are indepen-
dent random variables such that

0 p.a*
Uy = wp-4 (2.4.14)
M, w.p.1-a*and
Up = apl/“Mn
where{M,}; n= 1,2, ... are independent Mittag-lfiéer (@) random variables.

It can be shown that the process is strictly stationary anck®eaan. This
gives us the following theorem.

Theorem 2.4.3. The first order autoregressive equation given(Byt.7)
defines a strictly stationanAR(1) process with a Mittag-L@er () marginal
distribution for x, if and only if the innovations are of the forey = u, + vy
where y andu, are as in(2.4.14) with x, distributed as Mittag-Lgler ().

Proof2.4.2.  We prove this by induction. We assume tRat; is Mittag-Leffler
(a). Then by taking Laplace transforms, we get

by, (1) = pm,(@P71) - [&" + (1 — %), ()]
X[p+(1- p)x, ., (ab)]

1 1
=——- |a"+(1-a"
1+ arpte ( )1+ta
X|P+ =P

3 1 1+a™t* 1+ pa‘t®
T l+arptt l1+te 1+acte
1
1+te
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This shows thak, is distributed as Mittag-Lfer (@), and this establishes the
suficiency part.

The necessary part is obvious from the derivation of thevation sequence.
This completes the proof.

The joint distribution of &, X,_1) is of interest in describing the process and
matching it with data. Therefore, we shall obtain the joiistrabution with the
use of Laplace-Stieltjes transforms. The bivariate Laptaansform is given by

B 1 (S 1) = E{€XPESX — tX 1)}
= ¢({Pex(t) + (1 - p)px(as+t)}
_l+atst 1 { P, 1-p }
1+t l+pas |1+t 1+ (as+t)*)’

It is possible to obtain the joint distribution by invertitigs expression.

2.4.4. The NSMLAR(1) process

Now we extend the NMLAR(1) process to a wider class to constiunew
semi—Mittag-Lefer first order autoregressive process. The process has the
structure

0 with probabilityp
Xn =€+ . .
ax,.1 with probability 1- p

where{e,} are independently and identically distributed as the sutwofinde-
pendent random variablesg andv, where

TR (2.4.15)
M, w.p.1-a*and

Un = apl/aMn
where{M,}; n = 1,2,... are independently and identically distributed as semi—
Mittag-Leffler (@).
This process is also clearly strictly stationary and Mar&o\providedx, is

semi—Mittag-LéHer (@). This follows by induction. In terms of Laplace trans-
forms we have
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$x (1) = [P+ (1 - P, (@D][a” + (1 - a")dw, (V)]
X [pm,(@P"1)]

a a 1
B LS oyl | L G R ey
1
* T+ n(@p)
B 1+ a*n(t)
- p+(1‘p)1+aan(t)]' 1+n(t)]
1
“Trap)
1
1+t

Thus we have established the following theorem.
Theorem 2.4.4. The first order autoregressive equation
Xn=alX-1+6;, n=12 ...

where {l,,} are independent Bernoulli sequences such th@t, 2 0) = p
and Rl, = 1) =1-p; p € (0,1), a € (0,1) is a strictly stationary AR(1)
process with semi—Mittag-lgéer (o) marginal distribution if and only ife,} are
independently and identically distributed as the sum ofitwiependent random
variables y and v, as in(2.4.15) and x is distributed as semi—Mittag-jéer

(@).

Whenn(t) = t¢, the NSMLAR(1) model becomes the NMLAR(1) model.

Remark 2.4.2. If we consider characteristic functions instead of Laplaaas-
forms, the results can be applied to real valued autoregeepsocesses. Then
the role of semi-Mittag-L&ler distributions is played by semiLaplace dis-
tributions introduced by Pillai (1985). As special casesgeeLaplace and-
Laplace processes.
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Exercises 2.4.

2.4.1. If f(t) =t, find W™([0, X]).
2.4.2. If f(t) =t2, find F(X).
2.4.3. State any three distributions belonging to the semi-Mittaffler family.

2.4.4. Show that the stationary solution of Equation 4.5.7 is a laoonsisit-
ing of g.i.d. and clask distributions.

2.4.5. Obtain the innovation structure of the NEAR(1) model.

2.4.6. Obtain the innovation structure of the NMLAR(1) model.

2.5. Tailed Processes

In an attempt to develop autoregressive models for timeesevith exact
zeroes Littlejohn (1993) formulated an autoregressivegss with exponential
tailed marginal distribution, after the new exponentialoaegressive process
(NEAR(1)) of Lawrance and Lewis (1981). However, the priynaim of Lit-
tlejohn was to extend the time reversibility theorem of Qinek et al(1988) and
hence the model was not studied in detail. Hence we intenchtcera detailed
study on this process. Here the tail of a non—negative randworable refers to
the positive part of the sample space, excluding only thetggro.

Definition 2.5.1. A random variabléE is said to have the exponential tailed
distribution denoted b¥T(4, 6) if P(E = 0) = § andP(E > X) = (1 - 9)e
x> 0 whered > 0 and 0< 6 < 1. Then the Laplace-Stieltjes transformbis
given by

A

)=6+(1-6)——

oe(t) + ( )/l+t
_/l+9t
A+t
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2.5.1. The exponential tailed autoregressive process [E{1)]

It is evident that the exponential tailed distribution i self-decomposable
and so it cannot be marginal to the autoregressive struofugaver and Lewis
(1980). But an autoregressive process satisfying the NEA&(ucture given by
(2.4.7) can be constructed as follows.

. A+ 6t
We have from (2.4.8), by substituting(t) = Tt the Laplace transform
of the innovatiorg, in the stationary case as

A1+ 6t A+ at
(1) :[/Ht] A+alp+(1- D)Q]t]
[l

whereb = a[p + (1 - p)d]

wo-fora-arti-b- Yty

so that the innovationg,} can be represented as the sum of two independent
exponential tailed random variablesanduv, where

W 2ET(La)  and o, 2 ET(X,0) (2.5.1)

whered” = A/band@® = 6/b, providedd < b. Sincep < 1, we require that

6 < a. Thus the ETAR(1) process can be defined as a sequericeatisfy-

ing (2.4.7) wherde,} is a sequence of independent and identically distributed
random variables such that = u, + v, whereu, andv, are as in (2.5.1).

It can be easily shown that the process is strictly statypaad Markovian
providedx, is distributed a€£T(1,6). This follows by mathematical induction
since



138 2. STOCHASTIC PROCESSES AND TIME SERIES MODELLING

b (1) = ¢ (1) - [P+ (1 - P)x,, (an)]

A+at A+ 6t
A+t '/l+bt'[p+(l_p)(

_A+at A+6t A+ Dbt

A+t A+bt A+at
_A+6t

A+t

Wheno = 0, theET(, 6) distribution reduces to the exponentid) ¢listribution
and the ETAR(1) model then becomes the NEAR(1) model.

A+ Hat)]
A+ at

2.5.2. The Mittag-Lefller tailed autoregressive process [ML-
TAR(1)]

The Mittag-Lefer tailed distribution has Laplace transform given by

1
t)=0+(1-90)-
() =60+ (1-6)
1 a
= +9t; O<axl
1+te

and the distribution shall be denoted by Mldl; ¢). Similarly for a two-parameter
Mittag-Leffler random variable Mlg, 1) the Laplace transform of the tailed
Mittag-Leffler distribution is given by(t) = 6 + (1 - )2 = 42, This
shall be denoted by MLTE(, 4, 6). The MLTAR(1) process has the general struc-
ture given by the equation (2.4.7). The innovation struiettan be derived as

follows.

1+ 6t 1+ at®
¢e(t) = o - @
1+t 1+ap+(1- p)ot
Cl+att l+at
T 14t 1+4cte

wherec = a*[p + (1 — p)d]. Therefore

1
1+te

1, b
C-i_Ct

¢e(t) = [a" + (1-a")

1. ta
C+t
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Hence the innovatiofe,} can be viewed as the sum of two independently dis-
tributed random variablas, andv, where

Uy 2 MLT (@, &%)
and
on = MLT (@, 1, )
whered’ = 1/cY? and@’ = 6/c providedd < c. This holds whem < a®.

The model can be extended to the class of semi—Mittafjdredistributions.
Here we consider a semi—Mittag-fier distribution with Laplace transform
/l(l
)= —————
wherern(t) satisfies the functional equation

n(mt) = mn(t); O<m<1; O<ac<l

This is denoted by SMIA, 1). Then the semi—Mittag-Lf@ier tailed distribution
denoted by SMLT¢, A, 6) has Laplace transform

2+ ()
Px(t) = TR

The first order semi-Mittag-Lfler tailed autoregressive (SMLTAR(1)) process
has innovations whose Laplace transform is given by

AT+ on(t) | [ 2@ + an(t)
00 =| T || T oo
wherec = a*[p + (1 — p)d]. Therefore
AT+ a’n(t) | [ 2« + on(t)
00| T || a]
N " A 6 6\ A%/c
N a+%l_an+nm]k ( _Eywm+nm

Therefore, the innovatioris,} can be represented as the sum of two independent
semi—Mittag-Léfler tailed random variablag, andv, where
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Un 2 SMLT(a, 4,a%) and oy = SMLT(a, 1, 6) (2.5.2)

whered’ = 1/cY?, ¢ = 6/c. Then we have the following theorem which gives
the stationary solution of the SMLTAR(1) model.

Theorem 2.5.1. For0< p < 1,0 < a < 1 the stationary Markov process
{xn} defined by(2.4.7) has a semi—Mittag-Lfer tailed SMLTaq, 4, 6) marginal
distribution if and only if the innovation sequenieg} are independent and iden-
tically distributed as the sum of two independent semi-dgittgfier Tailed

random variables as i(2.5.2), provided is MLT(a, 4, 6).

The stationarity of the process can be easily establisisegiyan below.

Py (1) = ¢, (D[P + (1 — P)ox, . (ab)]
aa+amaq,w+emo]

A% +n(t) || A%+ cn(t)
A9 + on(at)
p+(1- p)m
A +a'n(t) | [ A* + on(t)
A +n(t) ] AT+ Cﬂ(t)]

Aot o
= T sincen(at) = a"n(t).

X

A + cn(t)
A + n(at)

Hencex, is distributed as SMLT, 1, ). The necessity part follows easily from
the derivation of the structure of the innovation sequehm®yv we consider the
following theorem.

Theorem 2.5.2. In a positive valued stationary Markov procesg} sat-
isfying the first order autoregressive equation=x ax, ; + €,, 0 < a < 1 the
innovations{e,} are independently and identically distributed as a tailed-d
tribution of the same type as that pf,} if and only if {x,} are distributed as
semi—Mittag-Lgler .

Proof 2.5.1.  We have, assuming stationarity,
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¢x(t) = ¢x(at)¢e (t)

Suppose
d(t) = 0+ (1 - 0)py(t) where 0< 6 < 1.
Then
Px(t) = gx(a[o + (1 — O)px(1)].
Writing
ox(t) = ; we get
1+n(t)
1 1 1
00 1@ |t T T0
1 1+ 6on(t)
1+ 1+n(t)]'

This impliesn(at) = 6n(t). By takingd = a*, this means that the distribution of
Xn IS semi—Mittag-Ldfler .

Conversely, iffx,} are semi—Mittag-Lffler , we get

_ Px(t) _ 1+ n(at)

#elt) = ox@) — 1+nt)
_1+am(t)

1)

=a’+(1-a")

1
1+n(t)

Hencele,} is distributed as SMLTH, a%).

The SMLTAR(1) process can be regarded as generalizatiotedAR(1),
NEAR(1), MLAR(1), NMLAR(1), TEAR(1), ETAR(1) and MLTAR(1)pro-
cesses. These processes are useful to model non-negativediies data which
exhibit zeros, as in the case of stream flow data of riversateatry during part
of the year. They are useful for modelling life times of dedaevhich have some
probability for damage immediately when it is put to use.Bimailar manner,the
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models can be extended to the seriaplace case and its special cases. Also
geometric Mittag-Léler and geometric alpha-Lapace distributions and time se-
ries models can be developed.

Exercises 2.5.

2.5.1. Derive the Laplace transform of the exponential tailedritigtion

2.5.2. Derive the innovation structure of the Mittag4Her tailed autoregres-
sive process.

2.5.3. Examine whether the Mittag-Ifieer tailed distribution is self decom-
posable.

2.5.4. Give a real life example where the exponential tailed distion can
be used for modelling.

2.5.5. Show that Laplace distribution belongs to the seniiaplace family.

2.5.6. Define a geometric exponential distribution similar to tle®metric
stable distribution.

2.5.7. Try to develop a generalized Laplacian model, with chargstie
functiong(t) = () -

2.5.8. Develop the concept in geometric infinite divisibility byptacing
addition by minimum in the case of g.i.d.

2.5.9. Develop an autoregressive minification structure by reptaaddition
by minimum in the standard AR(1) equation.
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2.6. Marshall-Olkin Weibull Time Series Models

2.6.1. Introduction

The need for developing time series models having non - Gaussarginal
distributions has been long felt from the fact that many radlyioccurring time
series are non - Gaussian with Markovian structure. In itegears Tavares
(1980), Yeh et al. (1988), Arnold and Robertson (1989),aP{1991), Alice
and Jose (2004, 2005) and others have developed variousguéassive mod-
els with minification structure. The Weibull distributioimcluding exponential
distribution play a central role in the modeling of survieallifetime data and
time series data of non-negative random variables suchdrslogical data and
wind velocity magnitudes. Lewis and McKenzie (1991), Broemal (1984)
note that although studies have shown that Weibull marglistfibutions have
been found adequate for wind velocity magnitudes, unfatiely ‘no time se-
ries models have been rigorously developed for random bl@sgpossessing a
Weibull distribution’. Wind power data are even more likétyneed very long
tailed marginal distributions. Again in reliability stuai, sequences of times be-
tween failures are correlated and models with non-constanginal hazard rate
are needed to model them adequately.

2.6.2. Marshall-Olkin semi-Weibull distribution and its prop-
erties

We say that a random variable X with positive support has a-¥eéarbull distri-
bution and writeX 2 SW(B, p) if its survival function is given by

Fu(X) = P(X > X) = exp(—¥(X)) (2.6.1)
where¥(x) satisfies the functional equation,
PP(X) = P(o7X): 8> 0,0<p <1 (2.6.2)

Equation (2.6.2) will give on iteration

P"P(X) = P(o7 X).
On solving (2.6.2) we obtail¥(x) = ¥*h(x), where h(x) is periodic in In x with
period(72Z). For details see Jose (1994, 2005) .
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We consider a new family of distributions introduced by Meéand Olkin
(1997). Considering a survival functidh, we get the one-parameter family of
survival functions

— aF(X)
G(x ) = ——; -0 < X< 00,0< @ < 0. (2.6.3)
[1-(1-)F(X)]
It can be easily seen thatwhen=1, G = F. _

Whenever F has a density, the family of survival functionegibyG(x; )
in (2.6.3) has easily computed densities. In particulaF, ifas a density f and
hazard rater, then G has the density g given by

af(x)
{1-(1-a)F(x)?

g(x a) = (2.6.4)

and hazard rate

re(x) ———00 < X< 00 (2.6.5)
1-1-a)FX®
Substituting (2.6.1) in (2.6.3) we get a new family of distrions, which we
shall refer to as the survival function of Marshall-OlkimsaeNeibull [MOSW
(a, B, p)] family, whose survival function is given by

r(x;a) =

iy a
G(X,a):m,x>o,a>o.
The probability density function corresponding to G is givey
‘V(X)\P/
gxa)= —2 TN 0es0.

670 — (1- )2
The hazard rate is given by

(X) :
1-(1- e’
Now we establish the following properties.

r(x;a) = x> 0,a>0.

Theorem 2.6.1. Let N be an integer valued random variable independent
of the X’s such that PN > 2] = 1 where{X,} is a sequence of indepen-
dent and identically distributed MOSW random variablesedly = (g)% min

(X1, X2, ..., Xn); N > a, N > 1is distributed as semi-Weibull.
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Proof 2.6.1. We have
Fv(X) = P[Y > X

= Z P[N = n].P[Y > XIN = n]

n=2

= D UPIN = nlL[F(C) XT"
n=2

- iP[N:n].l - ! =g
& L+ @)

HenceY is distributed as semi-Weibull.

Theorem 2.6.2. If {Xy, X,,---, Xy} are independently and identically dis-
tributed as MOSRa., 3, p), then Z = (2)F min(Xy, Xz, -+, Xp); 2,8 > 0,n >
1,n > a;is asymptotically distributed as semi-Weibull.

Proof 2.6.2. If X is distributed as Marshall-Olkin semi-Pareto, MOSPA p),
then

F(Xa,B,p) = m
where

(%) = Y(pPX).
Hence

Fr(X) = P[(—)%(mmxl, Xo -+ X0) > X
a

asn tends to infinity.
Similar results can be obtained in the case of Marshall ObFaneto and
Weibull distribution as a special case.
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Theorem 2.6.3. Let{X;,i > 1} be a sequence of independent and identically
distributed random variables with common survival functfe(x) and N be a
geometric random variable with parameter p an\NP= n) = pqd"?; n=1,2,...,

0 < p < 1, g=1-p, which is independent ¢X;} for all i > 1. Let Uy = 1mirll| Xi.

Then{Uy} is distributed as MOSW if and only §i;} is distributed as semi-
Weibull.

Proof 2.6.3.
H(X) = P(Uy > X)
= > [FMI"pd™?
n=1
PF(X)
1-1-pFX
Suppose _
F(X) = exp¥(X)).
Then

— 1
HO) = — :
1+ (L)' - 1)
which is the survival function of MOSW. This proves thefatiency part of the
theorem. Conversely, suppose

1
1+ (3)(E™ - 1)

H(x) =

Then we get B
F(X) = exp-¥(x)),
which is the survival function of semi-Weibull.

2.6.3. An AR(1) model with MOSW marginal distribution

In this section we consider a first order autoregressive mode

Theorem 2.6.4. Consider an AR (1) structure given by

) & wp p
X“‘{min(xn..l,en)w.|o(1—|o) (2.6.6)
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where{e,} is a sequence of independent and identically distributedicen vari-
ables independent of,Xthen{X,} is a stationary Markovian AR(1) process with
MOSW marginals if and only {&,} is distributed as semi-Weibull distribution.

Proof 2.6.4. From (2.6.6) it follows that
Fx,( = PFe,(x) + (1= P)Fx, ., (¥)-F o (¥) (26.7)
Under stationary equilibrium,

PF(Y)
B [1-(1- p)Fe(X]
If we takeF.(xX) = e *®, then it easily follows that

Fx(¥) =

— _ p

FX(X) - e\y(x) _ (1 _ p)a
which is the survival function of MOSW.
Conversely, if we take,

— _ p

FXn(X) - e\IJ(X) _ (1 _ p)7

it is easy to show thaf, (X) is distributed as semi-Weibull and the process is
stationary. In order to establish stationarity we procesfbhows.

AssumeX,,_1 d MOSW ande, d semi-Weibull.
Then -
FXn(X) = 1— (1 _ p)e_\y(x) .
This establishes thdiX,} is distributed as MOSW. Even X, is arbitrary, it
is easy to establish th@X,} is stationary and is asymptotically marginally dis-
tributed as MOSW.
The following theorem is regardingk{' order autoregressive model.

Theorem 2.6.5. Consider an autoregressive model of order k as follows

€n w.p. Po
m!n(Xn_l,en) w.p. P1
X, = { MiN(Xn-2,€n0) w.p. p2 (2.6.8)

mMin(Xnx, €n) w.p. Pk
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whereO < p; < 1, (p1+ p2+- -+ pPx) = 1—po. Then{X,} has stationary marginal
distribution as MOSW if and only {&,} is distributed as semi-Weibull.

The proof follows from the following facts.
Fx, () = Po Fe, (9 + Pr Fx, () Fe, (9 + -+ + i Fx, (Fe, ()
Under stationary equilibrium,
Fx(X) = po Fe(X) + pr Fx(X) Fe(X) + - + P Fx(X) Fe(x)
This reduces to _
- Fe(X
Fx(X) = Po Fe(X) .
[1 - (1 - po) Fe(X)]
It can be seen that the semi-Weibull distribution is a moneega class of

distributions which includes Weibull distribution in therse that foh(x) = 1,
we have¥(x) = .

2.6.4. Marshall-Olkin generalized Weibull distribution

Consider the two-parameter Weibull distribution with suaVfunction
F(X) = exp((Ax)F); x> 0,4 > 0,8 > 0.

Then substituting in (5.2.3) we get a new family of distribas, which we shall
refer to as the Marshall-Olkin Generalized Weibull (MOG\irily, whose sur-
vival function is given by

a exp[-(1x)]
1-(1- a)exp[-(1x¥]’
The probability density function corresponding to G is givey
aBPx-1 exp(x)?

G(X; @, ,B) =

x>0,4,8,a>0.

g(X a,4,B) = PV — (1— )2’ x>0,p,B,a>0.
The hazard rate is given by
B -1
(0 poang) = JPXY OPRY s s,

{exp@x) — (1 - o)}
We also explore the nature of the hazard ngtg. It is increasing ifa >

1, B> 1anddecreasingit <1, 8 < 1. If 8> 1, then r(x) is initially increasing

and eventually increasing, but there may be an interval eviteés decreasing.
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Similarly if 8 < 1, then r(x) is initially decreasing and eventually inciags
but there is an interval where it is increasing. Whenr= 1, it coincides with
the Weibull distribution. This points out the wide appliddap of the MOGW
distribution for modeling various types of reliability @t Theorem 2.6.4 and
theorem 2.6.5 can be extended in this case also.

2.6.5. An AR (1) Model with MOGW marginal distribution

Theorem 2.6.6. Consider the AR (1) structure given by
R w.p. p
X“‘{min(xn_l,en) wp. (1-p) (269

where{e,} is a sequence of independent and identically distributed cen vari-
ables independent of X then {X,} is a stationary Markovian AR (1) process
with MOGW(p, 4, 8) marginals if and only ife,} is distributed as Weibull dis-
tribution with parameterg andg.

Proof 2.6.5. Proceeding as in the case of theorem 2.6.4 if we take
Fe(x) = expaxy,
then it easily follows that

pexpEAxyP
[1-(1- IICCJJ)eXIG(—ﬁX)ﬁ]

[exp(x)’ — (1 - p)]
which is the survival function of MOGW{, 4, 8).
Conversely, if we take,

F_x(X)

P
[exp@x)f - (1 - p)I’
it is easy to show thaﬂn(x) is distributed as Weibull with parametetss and
the process is stationary. In order to establish statipnae proceed as follows.
AssumeX,_1 2 MOGW(p, A, 8) and{e,} LWeibull (1, 8).
Then

F_xn(x) =

plexp(-Ax)]

= T pewto
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This establishes thX} is distributed ad1OGW(p, 4, B). Even if X is arbitrary,
it is easy to establish thdi,} is stationary and is asymptotically marginally
distributed asMOGW(p, 4,p) .

Theorem 2.6.7. Consider an autoregressive modg| o order k with struc-
ture (2.6.8). Ther{X,} has stationary marginal distribution as MOGW if and

only if {e,} is distributed as Weibull.

Proof is similar to Theorem 2.6.9

Table 1 shows(X, < X,.1), which are obtained through a Monte Carlo
simulation procedure. Sequences of 100, 300, 500, 700, B€éreations from
MOGWAR (1) process are generated repeatedly for ten timdd@neach se-
quence the probability is estimated. A table of such prdtiegsiis provided with
the average from ten trials along with an estimate of stahdeor in brackets.
(see Table 1).

Table 1.P(X, < Xn_1) for the MOGWAR(1) process where= 1,5 = 5.

Sample size
p 200 400 600 800 1000
~
n
0.1| 0.7705171 0.7523951 0.7573636 0.745249 0.7589128
(0.002001358) (0.003661458) (0.2899318) | (0.002795277)| (0.002238917
0.2| 0.6740114 0.6597776 0.6564568 0.6621319 0.6654536
(0.005064845) (0.003381987) (0.003264189) (0.002337129)| (0.001765257
0.3| 0.6253248 0.5887756 0.5930888 0.5941391 0.5913183
(0.0551385) | (0.002164813) (0.0259571) | (0.002407355)| (0.003051416
0.4 0.5027496 0.4992585 0.5230972 0.5237219 0.5153204
(0.005699338) (0.004394413) (0.003465077) (0.001724348)| (0.003295175
0.5| 0.4097892 0.4390949 0.4486389 0.4265652 0.4378709
(0.003480096) (0.004124351) (0.003437423) (0.003071082)| (0.001833982
0.6| 0.3228981 0.3585286 0.3523585 0.3440362 0.357975
(0.005857569) (0.005020905) (0.003365158) (0.002421289)| (0.003009052
0.7 0.2695292 0.2676458 0.2646377 0.2773244 0.2731059
(0.005099691) (0.003165013) (0.003349412) (0.003459127)| (0.003940234
0.8| 0.1873956 0.207557 0.1761628 0.1863542 0.2003661
(0.005808668) (0.006569641) (0.002695993) (0.0033855295) (0.003308759
0.9| 0.1175264 0.1194025 0.1119517 0.1012818 0.1130184
(0.007946155) (0.006232362) (0.005194928) (0.002785095)| (0.003507806




2.6. MARSHALL-OLKIN WEIBULL TIME SERIES MODELS 151

2.6.6. Case study

In this section, we illustrate the application of the MOGWAIR process
in modeling a hydrology data as a case study. The data cerdisbtal daily
weighted discharge (in minof Neyyar river in Kerala at the location Amar-
avilla (near Amaravilla bridge) during 1993. Neyyar is origle west flowing
rivers in Kerala, located in the Southern most part. It orages from Agasthya-
mala at an elevation of about 1,860 m. above mean sea lewsh there it flows
down rapidly along steep slopes in its higher reaches and wheds its way
through flat country in the lower reaches. In the initial s&ghe course is in
a southwestern direction but at Ottasekharamangalamubeturns and flows
west. It again takes a southwestern course from Valappabifn upto its fall.
The Neyyar is 56 Km. long and has a total drainage area of 49Ksa It
is @ main source of irrigation in southern Kerala and the Meyyam is a main
source of hydroelectric power.

The arithmetic mean of the given data is 0.81. The estimaéeslatained as
p = .5 andg = .7. The calculated value gf is 0.626, which is significantly
less than the tabled value. Hence MOGW distribution is fotmbe a good fit
in this situation. It is found that the simulated MOGWAR (Xppess has close
resemblance to the actual data.

Exercises 2.6.

2.6.1. Define a minification process of order 1.

2.6.2. Obtain the class of distributions for which a stationary ifigation
process is defined.

2.6.3. Develop a minification process with Pareto marginals.
2.6.4. Develop a semi-Weibull minification process.

2.6.5. Obtain the relationship between semi-Weibull and semefadistri-
butions.

2.6.6. Obtain the innovation structure of a general Marshall-@tkinification
process.

2.6.7. Develop a bivariate Pareto minification process.
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2.6.8. Develop a bivariate exponential minification process otord

2.6.9. Derive the hazard rate function of a Marshall-Olkin expdredlistri-
bution.

2.6.10. Derive the stationary solution ofkd’ order minification process.
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2.7. On Concomitants of Order Statistics and Con-
comitants of Record Values: Applications in Point
Estimation

[ This Section is based on the lectures of Professor P. Yageen Thomas of the Department of
Statistics, University of Kerala.]

2.7.0. Introduction

Order statistics deal with properties and applicationgdéced random vari-
ables and their functions. Order statistics play a very irtgrt role in statistical
theory as it helps to develop methods of statistical infeeemhich are valid with
respect to a broad class of population distribution fumsidn several situations,
methods based on order statistics are proved to be rffasépt when compared
with others. These methods are widely accepted due to tingplisity and ro-
bustness, even at the cost of some losdiddiency.

Since there is no direct extension of order concept to naritite random
variables, the extension of procedure based on ordertgtatie such situations
is inapplicable. But however from a random sample arisingifa bivariate dis-
tribution, ordering of the values recorded on the first V@lgayenerates a set of
random variables associated with the correspondingriate. These random
variables obtained due to the ordering of ¥ig are known as the concomitants
of order statistics. LetX, Y) be a random vector with joint cumulative distri-
bution function ¢d f)F(x, y) and joint probability density functiomp@ f) f (X, y).

Let (X,Y;), i = 1,2, ...,n be a random sample drawn from the distribution of
(X,Y). Let X;., be thei'" order statistic of theX observation, then th¥ variate
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associated with th¥;., is called the concomitant of tH& order statistic and is
denoted byY;i.y. It may be noted that Bhattacharya (1974) has independently
developed the above concept of concomitants of order ttatiand he called
them as induced order statistics.

Applications of concomitants of order statistics ariseséweral problems
of study. The most important use of concomitants of ordeissiizs arises in
selection procedures whei< n) individuals are chosen on the basis of their
X-values. Then the correspondiigvalues represent the performance on an as-
sociated characteristic. For example, if the toput of n bulls, as judged by
their genetic make up, are selected for breeding, ¥jeR.1:, - - - , Yy Might
represent the average milk yield of their femat&spring. As another example,
X might be the score on a screening test &rntie score on a latter test. In this
example only the tojx performers in the screening test are selected for further
training and their scores on a second test generates therodaats of order sta-
tistics. These concomitants of order statistics help omedace the complexity
of identifying the best performers among a group of indialdu

Suppose the parent bivariate distribution is defined wdth F(x, y) andpd f
f(x, y), then thepd f of ther™ concomitanty;..y for 1 < r < nis given by (see,
David and Nagaraja, 2003, p.144),

g1n0) = [ 10 a0 2.7.1)

where f,.,(X) is the pd f of ther'" order statisticX., of the X variate andf (y|x)
is the conditionapd f of Y givenX = x.

The joint pd f of Y.y andYsy for 1 < r < s < nis given by (see, David and
Nagaraja, 2003, p.144),

gir.sn (Y1, y2) = f f f(yalX2) T (y2l%2) fr sn(X1, Xo)dXdXo, (2.7.2)

where f, <n(X1, X2) is the jointpd f of X, and Xsn. From Yang (1977) we get
the expressions foE(Y.ny), Var(Yy.), for 1 < r < nand Covlfj.n, Yisny) for
1 <r < s<nand are given below.

E(Virm) = E[E(YIXen)], (2.7.3)
Var(Y[r:n]) = Var[E(Y|Xr:n)] + E[Var(Y|Xr:n)] (2.7.4)
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and

CoV(Yrn, Yisny) = CoVIE(Y[Xrn), E(Y[Xsn)]- (2.7.5)

There is extensive literature available on the applicatibooncomitants of
order statistics such as in: biological selection problsee( Yeo and David,1984),
ocean engineering (see, Castillo,1988), developmentwottsiral designs (see,
Coles and Tawn,1994) and so on. Concomitants of order titatisave been
used by several authors in estimating the parameters ofifi@adistributions.
Harrell and Sen (1979) and Gill et al. (1990) have used coiteots of order
statistics to estimate the parameters of a bivariate nodisaibution. Spruill
and Gastwirth (1982) have considered another interessegofi concomitants
in estimating the correlation cficient between two random variablsand
Y. Barnett et al. (1976) have consideredfelient estimators for the correla-
tion codticient of a bivariate normal distribution based on concomgaf order
statistics. The distribution theory of concomitants in bivariate Weibull distri-
bution of Marshall and Olkin is discussed in Begum and Kh&0Q@2). Begum
and Khan (2000b) have also developed the distribution thebconcomitants
of order statistics from Gumbel’s bivariate logistic distition. In section 2, we
consider an application of concomitants of order stagshaestimating a param-
eter of Morgenstern type bivariate uniform distribution.

Let (X1, Y1), (X5, Y2), -+ be a sequence of independent and identically dis-
tributed random variables wittd f F(X, y), (X, y) € Rx R. Let Fx(X) andFv(y)
be the marginatd f sof X andY respectively. Le{R,,n > 1} be the sequence
of upper record values (see, Arnold et al., 1998, p.8) in ggaience oX’s as
defined by,

Rn:XTn, n:l’z""

whereT; = 1 andT, = min{j : X; > Xy, ,} for n > 2. Then theY-variate

associated with thX-value, which qualified as the" record will be called the
concomitant of thea" record and will be denoted b;. Suppose in an ex-
periment, individuals are measured based on an inexpetesivand only those
individuals whose measurement breaks the previous reemed®tained for the
measurement based on an expensive test; then the reswutagngolves con-
comitants of record values. For a detailed discussion omligtebution theory
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of concomitants of record values see, Arnold et al. (1998)Amsanullah and
Nevzorov (2000).

The pdf of n" (n > 1) record value is given by,

009 = T g -10a (1~ FxOI™ el (27.6)

and the jointpd f of mM™ andn™" record values fom < nis given by,

[-log(1 - Fx(x))]™* [—log(1 — Fx(X2)) + log(1 — Fx(xy))]™™*!

(m-1)! (n—-m-=1)!
fx(X1) fx(%2)
1—-Fx(x)

IR R (X1, X2) =

(2.7.7)

Thus thepd f of the concomitant ofi" record value is given by

fr (1) = f " f(y1X)gr, (0.

wheregg (X) is as defined in (2.7.6) andy|X) is the conditionapd f of Y given
X = x of the parent bivariate distribution.

The joint pd f of concomitants ofm" and n record values is given by (see,
Ahsanullah and Nevzorov, 2000),

00 X2
IR R (Y15 Y2) =f f f(ya1x0) f (y21%2)gr,, R, (X1, X2)dX1 0,

wheregg_ r, (X1, X2) is defined by (2.7.7). Some properties of concomitants of
record values were discussed in Houchens (1984), Ahséanaild Nevzorov
(2000) and Arnold et al. (1998). However, not much work isnsdene in the
distribution theory and applications of concomitants aforels in statistical in-
ference problems. In subsection 2.7.2, we provide an agipitof concomitants

of record values in estimating some parameters of Morganstpe bivariate lo-
gistic distribution.
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2.7.1. Application of concomitants of order statistics in sti-
mating a parameter of Morgenstern type bivariate uni-
form distribution

Scaria and Nair (1999) have discussed the distributionyh@faconcomitants
of order statistics arising from Morgenstern family of distitions (MFD) with
cd f defined by (see, Kotz et al., 2000, P.52),

F(Xy) = Fx(WFy@){l+a(l- Fx(Q)(1 - Fy(y))}, -1<a <1l (2.7.8)

An important member of th®1FD is Morgenstern type bivariate uniform distri-
bution with pd f given by,

Fooy) = L d1+af1-2)(1- L), 0<x<6, O<y<br -1<a<l
016> 601 0>
(2.7.9)

Now we derive the Best Linear Unbiased Estimator (BLUE) & garameter
6, involved in (2.7.9) using concomitants of order statistese, Chacko and
Thomas, 2004).

Let Y, r =1,2,---,nbe the concomitants of order statistics of a random
sample of size drawn from (2.7.9). Then thpd f of Y,.;; and the jointpd f of
Yir:n @andY(sy are obtained as,

1

g[r:n](y) ==

6, n+1

1+aw(l_ﬁ)], 1<r<n, (2.7.10)

and

1
grr.sn (Y1, y2) = ?[1 +a

5 +1

0>
n-2s+1 1 2y, : n-2s+1 2r(n—2s)
— — — a —
n+1 62 n+1 (n+1)(n+2)
(2.7.11)

-2r+1 2
n-2r+ (1 yl)

+a

x(l—%)(l—%)], 1<r<s<n.
6, 6,
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From (2.7.10) and (2.7.11) we get the means, variances ardiances of con-
comitants of order statistics as follows:

1 n-2r+1
E[Y[r:n]] = 0> [E - am
= Ooérn, (2.7.12)
where
. 1 _n- 2r+1
T emr 1)

1 o?(n—2r+ 1)
varlYiea] = 6; [1_2 T 360+ 17

= 65011 ns (2.7.13)
where
1 @*(n-2r + 1)y
Pren= 157 T 36n + 1
and

Cov[Yjrg» Yisn] = 2 [(” -2s+1)  2r(n-25) (n-2r+1)(n-2s+1)
rnjs snll —

236| (n+1) (+2)(n+1) (n+ 1)2

= 65pr.sns (2.7.14)
where

_ad*[(n-2s+1) 2r(n-29) (n-2r+1)(n-2s+1)

Prsn=36l" (n+1)  (+2)n+1) (n+ 17
Let Yiq = [Yn, -, Y]’ be the vector of concomitants. Then from (2.7.12)
we can write
E(Y ) = 62,

where

f = [f[l:n], ot ,f[n;n]]’.
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Then from (2.7.13) and (2.7.14), the variance covarianceixnal Y, is given
by

D(Ypq) = G653,
where

G= ((prsn))

If @ is known then Yy, 62¢, 65G) is a generalized Gauss-Markov setup and
hence the BLUE 0, of 6,) is given by,

0, = (€GE)¢GY
and the variance a, is given by,
Var(fy) = (£'G™¢)7'63.

It is clear thatd, is a linear function of the concomitan¥g.,; r = 1,2,---,n.
Hence we can Writéz = Zlea,Y[r;n], wherea,, r = 1,2,--- ,n are constants.
It is to be noted that the possible valueseoére in the interval {1, 1]. If the
estimated, of 6, for a givena = ag € [-1, 1] is evaluated, then one need not
consider the estimate f@g for « = —aq as the cofficients of the estimate in this
case can be obtained from the flagents ofd, for @ = a,. This property can be
easily observed from the following theorem:

Theorem 2.7.1. Let Yy, r = 1,2,---,n be the concomitants of order
statistics of a random sample, Yi),i = 1,2,---,n arising from (2.7.9) for a
givena = ag € [-1,1]. Let the BLUE#,(ay) of 6, for givena, based on the
concomitants Y., r = 1,2,---,n be written ag¥(ao) = X1, & Yjray. Then the
BLUE of,(—a) of 6, whena = —ayq is given by

n
fo(=a0) = ) 8 ru1Yiem With Var[f(—ao)] = Var[fa(ao)].
r=1

Proof2.7.1. From (2.7.13)and (2.7.14) ford r < nwe havep,n = Pn-r+Ln-r+in
and for 1< r < s< n, we havep, sn = Pn-si1n-r+1n- MoOreoverG is symmetric.
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Therefore we can write for any € [-1,1], G = JGJ, whereJ isan annx n
matrix given by,

0 0 1

S

1 --- 0 O

Again from (2.7.12) we have for any € [-1, 1],

(o) = } __n- 2r+1
&rnlao) = > 61'0—6(n n l)
= fn—r+l:n(_a’0)-

Thus

E(~ap) = Jé(—a).
Therefore, ifa = g is changed tax = —aq then the estimatéz(—ao) is given
by,

02(—0) = (¢'(—20)G"é(~0)) ¢ (—20)G Yy
= (¢'(20)IG " Ié(0)) ¢ (@0) IG Yy (—av).
SinceJJ =1 andJGJ = G, we get,
f2(—a0) = (€' (20)G*¢(a0)) ¢ (20)G I Yy

n
= Z arY[n—r+1:n] .
r=1

That is the Acoﬁcient of Y.y In 6, for @ = ag is the same as the ciieient of
Yin-r+1n IN 62 for @ = —aq. Similarly we get

Var[fx(-ao)] = Var{fa(ao)].
Thus the theorem is proved.

We have evaluated the diieientsa, of Y;.,1 < r < nin 6, and Vargy)
for n = 2(1)10 andx = 0.25(025)075 and are given in table 2.7.1. In order to
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obtain the @iciency of our estimaté,, we introduce a simple unbiased estimate
of 6, as,

52 = Y[1:n] + Y[n:n],

with variance given by,

Var(é)—92}+a—2+ 2n _n-t
77216718 \(n+1)(n+2) n+1

We have obtained the ratié’r—(":?—i as a measure of thdfieiencye, = €(6,/6,)

ar(-
of our estimatoréz relative to the unbiased estimatéy for n = 2(1)10 and
a = 0.25(025)075. It can be seen that théfieiency of our estimatoé, of
6, is relatively very high when compared with. An advantage of the above
method of obtaining the BLUE @ is that with the expressions f&{ Y;;.;;] and
CoV[Y(r:n}, Yisnj] One can also obtain without anyfficulty the BLUE ofé, even
if a censored sample alone is available.

2.7.2. Application of concomitants of record values in estnat-
ing some parameters of Morgenstern type bivariate lo-
gistic distribution

In this section we (see, Chacko and Thomas, 2005) considerahcomi-
tants of record values arising from Morgenstern Family oftBibutions with
cdf given in (2.7.1). We further derive the joipd f of concomitants om" and
n" (m < n) record values arising frortMFD. Based on these expressions we
also derive the explicit expression for the product momehtoncomitants of
record values.

An important member of th®1F D is the Morgenstern Type Bivariate Logis-
tic Distribution (MT BLD) and itscd f is given by,
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1+exp{_x;191}]_1 1+exp{ly@92}]l .
toofecrosaf G e ]

(2.7.15)
(X y) e R (61,62) eR% 01>0,0,>0, -1<a<1

FX,Y(X, U) =

X

Suppose in certain complicated experiments significanatnduted to the val-
ues of the secondary measurement made by an accurate expission indi-
viduals having record values with respect to the measuremade preliminarily
on them by an inexpensive test. Now we derive (see, Chackd lanchas 2005)
the BLUE’s of 8, and o, involved in theMT BLD defined by (2.7.15) whea
is known and also obtained the BLUE @fwheno» anda are known based on
concomitants of firsh record values.

The jointcd f of the standardT BLD is obtained by making the transformation
u= %% andv = £ in (2.7.15) and is given by,

Fuv(u,v) = [1+expEu)] ™ [1+ expEy)] ™ {1 ta expi-u - ) } |

[1 + expCu)][1 + expv)]
(2.7.16)

Let (Ui, V),i =1,2,--- be a sequence of independent observations drawn from
(2.7.16). LetR;, be the concomitant of the™" record valu&y, arising from
(2.7.16). Then thep_)df f[*;]](v) of Ry and the jointpd f f[’;nn](ul, vp) of R and

R[*n] for m < nare given below,

1 - expv)

f1,0) = [1+ exp(-0)] 2 exp(-a) {1 Fa1-2)| 2B

]} (2.7.17)

and form < n,
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fimm (v1,02) = [1+ eXp(—Ul)]_z [1+ eXp(—Uz)]_z expvy — v2)

X [1 + {2l (mn) - 1) (i;gz—zgg)
1- eXD(—vz))

1+ expluvy)

+ a® {4l3(m,n) — 21;(m n) — 2Ix(m,n) + 1}

o (1 - eXD(—vl))(l — exp(-v,) )]

+ a{2l(m,n) — 1}(

1+ explvq) /\ 1+ expluv,)
where,
1 " nmor-1(N—-M-1
l1(mn) = M- Din—m=1) rzzc; (-1) 1( r )
(n—1) "1 (r +9)!
X[n_r_l_(n—r—Z)!r! +(N—r—2)! ; S o |
(2.7.18)
_ (n-1)! 1\"& nmr-1fN—mM-1 1
IZ(m’n)_(m—1)!(n—m—1)!(l_5) ;(—1) 1( . )n_r—l
(2.7.19)
and

n-m-1

(M) = T 1)!(nl— m— 1)! ; (_1)n—m—r—1(n ) rrn_ 1)[r$n__r {)Il (1 - z—ln)

1 "Pr+9 [ 1 1
_(n—r—Z)[r!(l— 2r+l)_ ; gl (2r+s+1 - 3r+s+l)]]'
(2.7.20)

Thus the means, variances and covariances of concomitfinst m record
values (fom > 1) arising from (2.7.16) are given by,
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E[Ry] = a(1-2"") =y, (say), (2.7.21)
2
T _

Var[Ry] = 3 (1 -2V = v (say) (2.7.22)

and form< n,
Cov[R . Rigl = ?[{4ls(m n) — 2y (m n) — 2Ix(m,n) + 1} — (1 - 2"™)(1 - 2'")]
=Vmn (say), (2.7.23)

Let (X,Y;) i =1,2--- be asequence of independent observations drawn

from a population witled f defined by (2.7.15). If we writa = X;—fi andv = y;—jz
then we haveX; = 6, + o U; andY; = 6, + o,V fori = 1,2,---. Then by using
(2.7.21), (2.7.22) and (2.7.23) we have for 1,

E[Rn] = 02 + ooptn, (2.7.24)
Var[Ryy] = U%Vn,n (2.7.25)

and form< n,
CoV[R, Ryl = 05vmn, (2.7.26)
Clearly from (2.7.20), (2.7.21) and (2.7.22) it follows tha, v, and vy,
are known constants providedis known. Suppos®;y = (Ruy. Rz, -, Riy)

denote the vector of concomitants of firstecord values. Then from (2.7.24) to
(3.7.26), we can write

E[R[n]] = 0,1+ o,u, (2727)

where 1 is a column vector efones angi = (us,- - ,un)’. Then the variance-
covariance matrix oR; is given by,

D[R] = Ho, (2.7.28)
whereH = ((v;)). If e involved iny andH are known, then (2.7.27) and (2.7.28)

together defines a generalized Gauss-Markov setup and pheceéding as in
David and Nagaraja 2003, p. 185) the BLUE's9¢fando-, are given by
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é ~ ,Lt’H_l(/ll’ _ 1/,[’)H_1

> 3 R (2.7.29)
and
R 1/H—1 1 — ul’ H—l
2= (“A KR R, (2.7.30)
where
A= (H )W HT) - (@ H ™Y

The variances of the above estimators are given by

R /H—l
Var(@,) = (“ - K ) o2, (2.7.31)
and
TH 11
Var(s) = ( )ag. (2.7.32)

Clearlyd, andc, can be written a8, = Y, biRy; ando’, = 3, ¢iRi; whereb;
andc;, i =12 ---,nare constants.

We have evaluated, the dtieientsb; andc of R;;, 1 <i < nin 6, and
G2 Var(@,) and Varg5) for n = 2(1)10 ande = 0.25(025)075 and are given
in table 2.7.2 and table 2.7.3 respectively. In order to caraphe éiciencies of
our estimator®, and, we introduce two simple unbiased estimatorgcand
o, based on the concomitants of the first afdrecords as given below,

02 = Ry

and
~ _ R —Ry
72T G-y

Clearly from (2.7.23) it follows thad, is unbiased fos, and&> is unbiased for
o,. By using (2.7.24), (2.7.25) and (2.7.26), we get the vaearofd, ando,
as,
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Var[d,] = =2

and

1
21—zl

— 20%{413(1, n) — 213(1, n) = 2l(1, n) + 1}|.

271.2
Var[O’:z] = ?) - az(l - Zl_n)z

We have obtained the variance@f the relative ﬁiuency\\;ar((zzi of 6, relative to

6, for n = 2(1)10;a = 0.25(025)0.75 and are provided in table 2.7.2. Again we
have obtained the variance @%, the relative &iciency Var§02§ of o, relative to
0, forn=2(1)10; a = 0.25(025)075 are provided in table 2.7.3.

Remark 2.7.1. We can see that the BLU& of 6, does not depend much on the
association parameterbut the BLUEo, of o-, depends very much anand our
assumption is thar is known. Therefore in the situation wheteis unknown
we introduce a rough estimator feras follows, in order to make our estimators
6, and&, useful for thew unknown situation.

For MT BLD the correlation coéicient between the two variates is given
by p= ”—3‘2&. If r is the simple correlation cdigcient betweerR andRy,i =
1,2,3,--- then a rough moment type estimator tois obtained by equating
with the population correlation céiecientp and is obtained as,

r% otherwise

Remark 2.7.2. From the tables we can see that tltceency of the BLUE of
6,, the location parameter ranges from 1 t@5land the fficiency of the BLUE
of o, the scale parameter ranges from 1 {651 It is clear that thef@ciency of
the BLUE of o, is better than thef@ciency of the BLUE of9,. However, one
should keep in mind that competitors are naive estimataraus®e those are the
only available estimators to obtain the relativiaency of our estimators in this
situation.
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