
CHAPTER 4

APPLICATIONS IN ASTROPHYSICS

[This chapter is based on the lectures of Professor Dr. Hans Haubold of the Outer Space

Division of the United Nations.]

4.0. Introduction

Since the participants of the Fourth S.E.R.C. school are of different back-
grounds it is not worth discussing the individual topics in astrophysics. Only
the mathematical aspects where the various special functions come in naturally
will be discussed here. We start with a few topics in astrophysics such as so-
lar models, energy generations in stars, gravitational instability problems and
reaction-diffusion problems.

4.1. Solar Models

When looking at the internal structure of the Sun one has to look at mass
conservation, hydrostatic equilibrium, energy conservation and energy transport.
These can be described by a system of non-linear differential equations which
cannot be fully solved analytically. Hence the standard techniques adopted are
numerical evaluations thereby resulting in computer-generated solar models. In
order to derive analytic models a starting point would be to look into the den-
sity distribution in the core of the Sun. It is well known thatthe matter density
decreases from the center to the exterior, temperature and pressure also behave
the same way. The solar core is a more stabilized region and hence an analytic
model for the matter density distribution in the solar core is an appropriate start-
ing point. Letr be an arbitrary distance from the center of the Sun andR⊙ the
solar radius. The simplest model for matter densityρ(r) is a linear model of the
type
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ρ(r) = ρ0

[

1−
r

R⊙

]

(Model 1)

which indicates that the matter density decreases linearlyfrom the core to the
surface and it is zero at the surface and it is a constantρ0 at the center. But ob-
servations indicate that a linear model is not correct. A more appropriate starting
point would be to consider the non-linear model

ρ(r) = ρ0
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, δ > 0 (Model 2) (4.1.1)

whereδ is an arbitrary parameter. Since the surface area of a sphereof radius r
is 4πr2 the mass of the Sun can be computed from the relation.

d
dr

M(r) = 4πr2ρ(r). (4.1.2)

That is,
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. (4.1.3)

Denoting the total mass byM⊙, this gives the central density

ρ0 =
3
4π
δ + 3
δ

M⊙
R⊙
. (4.1.4)

From the connection between pressureP(r), massM(r) and densityρ(r), namely,

d
dr

P(r) = G
M(r)ρ(r)

r2
(4.1.5)

where G is the gravitational constant, we have
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P(r) = P(0)−G
∫ r
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(4.1.6)

where
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. (4.1.7)

From the relationship between temperatureT (r) and pressureP(r), namely,

T (r) =
µ

kNA

P(r)
ρ(r)

(4.1.8)

whereµ is the mean molecular weight,NA is Avogadro’s constant andk is the
Boltzmann constant, we have
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. (4.1.9)

From the equation of energy conservation, namely,

d
dr

L(r) = 4πr2ρ(r)ǫ(r) (4.1.10)

whereL(r) represents the energy flux through the sphere with radiusr so that
L(R⊙) represents the luminosity of the Sun andǫ(r) is the rate of thermonuclear
energy generation per unit mass including the tiny energy losses via solar neutri-
nos, we can compute luminosity once an expression is available for ǫ(r).

If we consider a specific reaction, say particles 1 and 2 reacting to give rise to
particles 3 and 4 or 1+2→ 3+4 then the internal luminosity due to this specific
reaction is given by
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L12(R⊙) =
∫ R⊙

0
4πr2ρ(r)ǫ12(r)dr (4.1.11)

A general model that can be used to representǫ(r) is the following:

ǫ(r) = ǫ0

[

ρ(r)
ρ0

]α [T (r)
T0

]β

, (4.1.12)

whereα andβ are real constants.

4.1.1. A more general model for density

A more general two-parameter model for the matter density distribution is
the following:

ρ(r) = ρ0
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, δ > 0, γ > 0 (Model 3) (4.1.13)

Example 4.1.1. Evaluate the total massM(R⊙) as well as the mass contained in a
sphere of arbitrary radiusr under the model in (4.1.13).

Solution 4.1.1. The total mass is given by

M⊙ =
∫ R⊙

0
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dr (4.1.14)

= 4πR3
⊙ρ0

∫ 1
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, (4.1.15)

evaluating (4.1.14) with the help of a type-1 beta integral.Mass at an arbitrary
radiusr is given by
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M(r) =
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Expanding (1− µδ)γ with the help of a binomial expansion and then integrating
out we have the following:
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Hence
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δ
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Note that the models in (4.1.13) and (4.1.1) are really validonly in the interior
core of the Sun. The convective zone has entirely a different behavior for the
density distribution. But for computing the total mass, pressure, temperature
and luminosity we have integrated out over the entire lengthof the solar radius
R⊙. This is not appropriate. The integration should have been done only in the
interior core of the Sun. Hence a more appropriate model is ofthe following
form:

ρ(r) = ρ0
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, δ > 0, γ > 0, a > 0 ( Model 4 ). (4.1.16)
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Since 1− axδ > 0, x = r
R⊙

, we have 0≤ x ≤ 1

a
1
δ

. Hence for the total integral the

range should have been 0≤ r ≤ R⊙

a
1
δ

.

Exercises 4.1.

4.1.1. Evaluateρ0 in terms of the total massM⊙ for the Models 1, 2, 3 and 4.

4.1.2. EvaluateM(r) for the Models 4 in (4.1.17).

4.1.3. Evaluate the expression for pressureP(r) under Models 3 forδ = 2.

4.1.4. Evaluate the expression for temperature under Models 3 forδ = 2.

4.1.4. Evaluate the expression forM(r) under Models 4.

4.2. Solar Thermonuclear Energy Generation

In reaction rate theory when two particles 1 and 2 reacting togive rise to
particles 3 and 4, namely 1+2→ 3+4, the basic assumption is that the distribu-
tion of the relative velocities of the reacting particles always remains Maxwell-
Boltzmannian. Then the distribution of the relative velocities of the particles can
be written as

f (v)dv =
(

µ

2πkT

)
3
2

exp

{

−
µv2

2kT

}

4πv2dv (4.2.1)

such that
∫ ∞

0
f (v)dv = 1. In terms of energyE = µv2

2 we have the density forE
given by,

f (E)dE =
2

π
1
2 (kT )

3
2

exp
{

−
E

kT

}

E
1
2 dE. (4.2.2)

If the relative velocity of the interacting particles 1 and 2is v then the thermally
averaged product of the cross sectionσ, denoted by the expected value ofσv or
< σv > has the following expression under Maxwell-Boltzmann velocity distri-
bution (see Mathai and Haubold (1998)) and in the charged particle case.
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The reaction probability integral coming from< σv >, denoted byNν(z), is then
given by

Nν(z) =
∫ ∞

0
yνe−y−zy−

1
2 dy. (4.2.4)

A more general integral, where (4.2.4) is a particular case,is already evaluated
in Example 1.6.3 of Chapter 1. From there we note that

Nν(z) =
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[
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4
|0, 12 ,1+ν

]

, (4.2.5)

whereG(·) is a Meijer’sG-function. Equation (4.2.3) is the situation under non
resonant reactions. But with depleted Maxwell-Boltzmann distribution the reac-
tion probability integral changes to the following:

Nν(z; δ) =
∫ ∞

0
yνe−y−zy−

1
2 e−y

δ

dy. (4.2.6)

With modified Maxwell-Boltzmann distribution the reactionprobability integral
has the following form:

Nν(z, d) =
∫ d

0
yνe−y−zy−

1
2 dy, d < ∞. (4.2.7)

In this case it is a fractional integral. In the resonant situation it can be shown
(see Mathai and Haubold (1988) ) that the reaction probability integral has the
following form:

N(a, b, q, g) =
∫ ∞

0

e−ay−qy−
1
2

(b − y)2 + g2
dy. (4.2.8)

In the corresponding depleted case the above integral will be modified to the
following:

N(a, b, q, g, δ) =
∫ ∞

0

e−ay−qy−
1
2−cyδ

(b − y)2 + g2
dy. (4.2.9)
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In the corresponding modified resonant case the integral will have the fractional
form

Nd(a, b, q, g, δ) =
∫ d

0

e−ay−qy−
1
2−cyδ

(b − y)2 + g2
dy. (4.2.10)

All these various cases and the related situations are considered in a series of pa-
pers by Haubold and Mathai, some of the earlier ones are available from Mathai
and Haubold (1988). Some of the recent works from 1988 to 2005will be men-
tioned in the lectures to be given by Professor Dr. Hans Haubold at the Fourth
SERC School.
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