CHAPTER 4

APPLICATIONSIN ASTROPHYSICS

[ This chapter is based on the lectures of Professor Dr. Hans Haubold of the Outer Space
Division of the United Nations.]

4.0. Introduction

Since the participants of the Fourth S.E.R.C. school areiféérént back-
grounds it is not worth discussing the individual topics straphysics. Only
the mathematical aspects where the various special fursctiome in naturally
will be discussed here. We start with a few topics in astrgpisysuch as so-
lar models, energy generations in stars, gravitationdbimbty problems and
reaction-dffusion problems.

4.1. Solar Models

When looking at the internal structure of the Sun one has @& &t mass
conservation, hydrostatic equilibrium, energy conseéovedind energy transport.
These can be described by a system of non-lineféeréntial equations which
cannot be fully solved analytically. Hence the standartineques adopted are
numerical evaluations thereby resulting in computer-geieel solar models. In
order to derive analytic models a starting point would beotklinto the den-
sity distribution in the core of the Sun. It is well known tliaé matter density
decreases from the center to the exterior, temperature rassye also behave
the same way. The solar core is a more stabilized region amckhen analytic
model for the matter density distribution in the solar caram appropriate start-
ing point. Letr be an arbitrary distance from the center of the SunRnthe
solar radius. The simplest model for matter dengs(ty is a linear model of the
type
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214 4. APPLICATIONS IN ASTROPHYSICS

o(r) = po [1 - é] (Model 1)

which indicates that the matter density decreases lindaoiy the core to the
surface and it is zero at the surface and it is a congigat the center. But ob-
servations indicate that a linear model is not correct. Agrappropriate starting
point would be to consider the non-linear model

0
r
p(0) = po [1 (&)
whereé is an arbitrary parameter. Since the surface area of a spheadius r
is 4712 the mass of the Sun can be computed from the relation.

,6>0 (Model 2) (4.1.1)

d%M(r) = 4nr?p(r). (4.1.2)

That is,

T e _iél
M(r)_4pofot[1 (R@) dt

i 3 ry
= €p0r3 ll " 613 (§) ] : (4.1.3)

Denoting the total mass o, this gives the central density

36+3M,
- __ 2 41.4
po v 6 Ry ( )

From the connection between pressia(e), massV(r) and density(r), namely,

M(r)o(r)

d
5PN =6—3 (4.1.5)

where G is the gravitational constant, we have
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Py = P0)-G [ M0
4nG ‘o (0+6) (Y™
= —PoRé{f 5 (_) (6+2)©E+3) ( )
3 r 20+2
S (@) } (4.1.6)
where
. } ) (6 + 6) . 3 ’ 4.1.7)

2 (6+2)0+3) 20+1)0+3)
From the relationship between temperatti{e) and pressur@(r), namely,

p P(r)
T(r) =

kNA o(r)
wherepu is the mean molecular weighll, is Avogadro’s constant anklis the
Boltzmann constant, we have

(4.1.8)

T(r) =

4Gup, R {f— 1( r )2

INa [1-(£)Y1V 2\R

(6 +6) r\°2 3 [ \2+2
‘Foeslr) mrerslR) b @19

From the equation of energy conservation, namely,

dgrL(r) = 47r?p(r)e(r) (4.1.10)

whereL(r) represents the energy flux through the sphere with radacs that
L(Rs) represents the luminosity of the Sun aifd) is the rate of thermonuclear
energy generation per unit mass including the tiny energyds via solar neutri-
nos, we can compute luminosity once an expression is al@ilabe(r).

If we consider a specific reaction, say particles 1 and 2 irggt give rise to
particles 3and 4 or £2 — 3+4 then the internal luminosity due to this specific
reaction is given by
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Ro
L12(Ry) = f Artr2p(r)ego(r)dr (4.1.11)
0
A general model that can be used to repregémtis the following:
@ B
e(r)=60[@] [m] : (4.1.12)
Po To

wherea andg are real constants.

4.1.1. A moregeneral model for density

A more general two-parameter model for the matter densggridution is
the following:

o(F) = po [1 - (é) ] . 5>0,y>0 (Model3) (4.1.13)

Example 4.1.1. Evaluate the total madel(R,) as well as the mass contained in a
sphere of arbitrary radiusunder the model in (4.1.13).

Solution 4.1.1. The total mass is given by
Ro r T
Mo = f 4rtr2pg ll -~ (—) l dr (4.1.14)
0 Ro
r

1
= 471Répofo xz[l— x‘s]ydx,x "R

1
= 47rR§pofo g [1-y dyy =X

r(3)rey+1)
Ty+1+3)’

= 47Rpo

evaluating (4.1.14) with the help of a type-1 beta integhdass at an arbitrary
radiusr is given by

(4.1.15)



4.1. SOLAR MODELS 217

r t oY
M(@r) = | 4nt? 1—(—)] dt
") L m{ -
Rs t
= 47rpoF§f u’[l - w]’du,u= —,0<u< 1l
0 Ro

Expanding (1- 1°)” with the help of a binomial expansion and then integrating
out we have the following:

(L) = (L= ) = Ef’%MY
. ( 7)k 2+6k
M(r) = 4rpo F@Z fo du

)3+6k

(&
= 47rpoR§>Z = T)k 3+ 6k

But
1 1 (%)k
k+2  2(2+1)
Hence
4rpg 3.3 s
M(r) = — »F 1 (=
()= =52 Falr. 505 + L))

Note that the modelsin (4.1.13)and (4.1.1) are really \@iilgt in the interior
core of the Sun. The convective zone has entirelyfiedint behavior for the
density distribution. But for computing the total mass,gstge, temperature
and luminosity we have integrated out over the entire leogtihe solar radius
R.. This is not appropriate. The integration should have beerednly in the
interior core of the Sun. Hence a more appropriate model thefollowing
form:

01
p(r) = po 1—a(é)l , 6>0,y>0a>0 (Model4) (4.1.16)
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Since 1- ax’ > 0, x = R@, we have < x < . Hence for the total integral the
a

range should have beend0r < =%

aS

Exercises 4.1.

4.1.1. Evaluatepg in terms of the total masl, for the Models 12,3 and 4.
4.1.2. EvaluateM(r) for the Models 4 in (4.1.17).

4.1.3. Evaluate the expression for press&Xe) under Models 3 fob = 2.
4.1.4. Evaluate the expression for temperature under Models 8 $0P.

4.1.4. Evaluate the expression ff(r) under Models 4.

4.2. Solar Thermonuclear Energy Generation

In reaction rate theory when two particles 1 and 2 reactingive rise to
particles 3 and 4, namely2 — 3+ 4, the basic assumption is that the distribu-
tion of the relative velocities of the reacting particleways remains Maxwell-
Boltzmannian. Then the distribution of the relative vel®d of the particles can
be written as

3
_(H _H 2
f(0)do = ( e exp{ T}47rv dv 4.2.1)
such thatfO f(v)dv = 1. In terms of energyE = ‘% we have the density fdE
given by,
f(E)dE = _ex { E}Esz 4.2.2)
KDY p T 2.

If the relative velocity of the interacting particles 1 angs2 then the thermally
averaged product of the cross sectiordenoted by the expected valuecaf or
< ov > has the following expression under Maxwell-Boltzmann egiodistri-
bution (see Mathai and Haubold (1998)) and in the chargetitfegmcase.
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12
8\f & s(0) 1 fw 3
<ov>=[— e 2y, 4.2.3

(m) Z; okt Jo Y Y (42.3)

The reaction probability integral coming fromov >, denoted byN,(2), is then
given by

N,(2) = f yer ¥ 2dy. (4.2.4)
0

A more general integral, where (4.2.4) is a particular casalready evaluated
in Example 1.6.3 of Chapter 1. From there we note that

M@:%Qﬁ%%m} (4.2.5)
T2

whereG(+) is a Meijer'sG-function. Equation (4.2.3) is the situation under non
resonant reactions. But with depleted Maxwell-Boltzmaistribution the reac-
tion probability integral changes to the following:

0 1
N,(z 6) = f y ey el dy. (4.2.6)
0

With modified Maxwell-Boltzmann distribution the reactiprobability integral
has the following form:

d ,
M@@:fj@ﬂﬂ@ﬂ<m 4.2.7)
0

In this case it is a fractional integral. In the resonantatitan it can be shown
(see Mathai and Haubold (1988) ) that the reaction prolighiitegral has the
following form:

_1
ey 2

In the corresponding depleted case the above integral wilinbdified to the
following:

1
(o) — — —
e y-Y Cy

N(a b, q,qg,0) = —dy.
(a,b,q,g,9) ] (b_y)2+g2y

(4.2.9)
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In the corresponding modified resonant case the integrahesie the fractional
form

(@b ) d (i“é‘y—qy_%—cy‘s g (4.2.10)
Ng(a,b,q,g,6) = ———dy. 42.1

o (b—y)?+g?
All these various cases and the related situations aredenasl in a series of pa-
pers by Haubold and Mathai, some of the earlier ones aresdvaifrom Mathai
and Haubold (1988). Some of the recent works from 1988 to 20%e men-

tioned in the lectures to be given by Professor Dr. Hans Hiaudothe Fourth
SERC School.
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