CHAPTER 5

BASIC HYPERGEOMETEIC FUNCTIONS

[This chapter is based on the lectures of Dr. Remy . Denis of the Gorakhpur University,
Gorakhpur, India and Professor S. Bhargava of the Department of Mathematics, University of
Mysore, Manasa Gangotri, Mysore 570 006, India, at the 5™ SERC School’]

5.0. Introduction

C.F. Gauss (1812) introduced the following series, known as Gaussian hyperge-
ometric series (function)

abz a@+1)bb+1) f

1+ c1l " c(c+1) 2!
_ o @n(b)n 2
2 o
=,Fi(ab;c 2 = zFl(a’ (t?; Z) (5.0.1)

where (a), =a(a+1)(@a+2)---(a+n-1),n>0,(a) = 1.

Ratio test will reveal that (5.0.1) is convergent for |2 < 1 and for z = 1 if
R(c—a-b)>0andforz=-1ifR(c-a-b+1)>0.

This case, further, is extended to

® (a1).---(a
oFg(a, @, -+ ,ap; by, by, -+ by 2) = Z (@a)n - (@p)n 2 (5.0.2)
n=0

4 (by)n -+~ (bg)a NI°

The series (5.0.2) is convergent for all values of zwhen p < q+ 1. Also, it is valid
for |zl < 1when p =g+ 1andfor R (37, b, - X7 a;) > 0whenz=1.
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158 5. BASIC HYPERGEOMETEIC FUNCTIONS

Heine (1898) generalized the Gaussian hypergeometric function with the help
of basic number, say, []q which he introduces as

B 1- qa
[a]q = 1-q

, lgl<1 5.0.3
J q (5.0.3)

and a any number, real or complex. It is evident that, as g — 1, the basic number
[a]lq — a.

Applying the concept of basic number, Heine introduced the g-Gaussian function
or g-(or basic) hypergeometric function by defining the series,

- -d), -PL-HA - -,
S s K s e e e T

with |g| < 1, called the base of the basic hypergeometric functions. As q — 1,
(5.0.4) reduces to (5.0.1).

(5.0.4)

Such series are found in the work of Euler (1748), Gauss (1866). Jacobi (1829)
in his “Fundamenta Nova” defined four theta functions with the help of basic hy-
pergeometric series.

5.0.1. Convergenceof Heineseries

We apply comparison test to study the convergence of (5.0.4). Thus, if we
denote by uj, the n' term of (5.0.4), we get

Un+1 _ (1 _ qa+n)(1 _ qb+n)z
U Q-g)(-ogn)

Now, with |g| < 1, as h — oo, we get

(5.0.5)

Un+1
Un

- Z

Hence the series (5.0.4) converges absolutely for |7 < 1.
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Normally, we follow the notation of G.N. Watson who replaced g2 by a. As
such Heine’s series can be put in the form,

(1-ad-b  (1-al-aq(-Db)Il-bg

-ai-0 T A9l -Pa-od-cq)
(2 alolb: o,
Z

1+

mmm%
=w%hucqﬂ=m4&|gq;1 (5.0.6)
where
[a;dln=(1-2a)(1l-ag)(l-ag’)--(1-ag""),n>1
and

[a;qlo = 1.

Following the above notation, we can define a generalized basic hypergeometric
functions (series) as

%a@m,%qq ¢W)q1
by, by, ---, bs ~ % ()

o [a;dlh- - [a; dla
[q q] [bly q]n [bs; q]n

(5.0.7)

If there is no ambiguity, we drop g from the [a, q], and simply write it as [«],
and drop g from the ¢ notation also.

5.1. Certain Summations

In this section we can discuss certain simple but very important summation for-
mulae for basic hypergeometric functions. Let us consider the following functions,
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1ola ;g7 = Z (8l (5.1.1)

r [Q]n

ola: 160 = Z”W“ (512)

Now, (5.1.1) and (5.1.2) yield,

1bold; 50z — 10 ;0 0z

Hence, we get,

1908 50,2l — 140 ;Q;02] =

Similarly, we have

1ola ;02 -

Hence, we have

1%ola; ;0 2] -

o0 o
_(1-a) Z [aq]
n=0

a 1gola; 0, 02| = (1-a) 1¢olac; ;0;2].

_ [aln B [a]n
‘me( me
[ cI]n
-z, (ke
= (1-2a)z 1polaq; ;0;7].

(1-a)z 1¢0laq; ;0;9z]. (5.1.3)

a 1¢o(a; ;092
_ o [a]nZ" Can o [alna?
=2 [, aQ)_nZ:; [al

n=0

i, =(1-4a) 1¢olag; ;q;7].

(5.1.4)

Now, eliminating 1¢0 [aq; ; g; z] with the help of (5.1.3) and (5.1.4), we get,

1600l 0,z —1do[a; ;0,02 =z 140 (& 50 2] -

which leads to,

az 1¢oa; ;0; 9z
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(1-2 1¢ola; ;07 = (1-a2) 1¢ola; ;0507 (5.1.9)
Hence, we have,
1-—
oo 168 = ) e i) (5.L6)
Now, replacing zby zq in (5.1.6), we get,
1-
1pola; ;G 2q] = % 1¢ola; ;q; 072, (5.1.7)
Substituting for 1¢o[a; ; q; zq] from (5.1.7) on the right hand side of (5.1.6) we get
cea . (1-a7(1 -az) e 2
190[d; ;G 7 = 120 _m 100la; 5, 0°2). (5.1.8)

Now, by iteration, we get

(1-az(l-az)---(1-azq™?) o
1-21-29) - (L-2zg™Y 1pola; ;0,02 (5.1.9)

Now, letting n — oo in (5.1.9) the 1¢ reduces to 1 and we get,

1ola; ;0;2) =

[az; 0]
[Z]

160l 50, 2] = (5.1.10)

where
fo; e = | [0 aq).
The summation given by (5.1.10) is q-anaI(;;(l)Je of binomial theorem.
Exercises 5.1.
Prove the following:

5.1.1.

1¢ol@; 50,2 190[b; ;q; az] = 140[ab; ;q; 2. (5.1.11)
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512
€(2) = 100l ; ;0; 2 = Z dl. (5.1.12)
(g- analogue of exponential ). (Hint: puta = 0in (5.1.10)).
5.1.3.
z Z z
e R S 0 I (o T R PR i)
1
C(1-2Q-z9)1 -z -zg) (L)
(Itis (5.1.12) in series and product forms ).
51.4.
©  ~n(n-1)/2 n
Eq(d) = Z ] [q]n( 2 iz d. (5.1.14)

(big exponential). (Hint: Replace zby z/ain (5.1.10) and let a — 0.)
5.1.5.

q + qz + .= 1
-4 (1-9@1-9) 1-1-0g?)---(1-q)

(Hint: putz=qin (5.1.12)).

(5.1.15)

5.1.6.
z qz2 o (_l)nqn(n—l)/zzn o ) o
STttt oot a—g - At-zi-)
(5.1.16)
(Hint: Expand (5.1.14)).
5.1.7.
g q2 (-1)"q n(n+1)/2

= (1-0)(1-9°)(1-9°).
(5.1.17)

Tt ot-® Tl ot-® a-q)
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5.1.1. Summation of ,¢1[a, b;c; 7]

In this section we shall discuss the summation of ,¢4[a, b; c; zZ]. We have

»¢1[a,b;c; 7] = Z ["E‘glri[t[)(]:ilzn
n=0 n n

_ Z [a]n2" [b]n[bg"]e [0
[aln [cln[coMe [bOM]e

_ [ble < [a]nZ" [cq"]

el Z [aln [bg"].

_ [bls i [a],2' i [c/tflé]b“qm (using (5.1.10))
n=0 r=0 '

el & [dl
_ [0l <0 [e/blb" < [8]n(za)"
B [C]oog; [al: ; [aln

_ [ble < [e/b) b [z ]
O £ [ [
_ (Bl . $ [c/bL Y
. e & [dilad,

(using (5.1.10))

or

a b z]_[b]m[aZ]oo ¢1[c/b, z b]. (5.1.18)

2¢1[ c |7 @ az
The right side reduces to 1¢9 for z = c¢/ab and can be summed with the help of
(5.1.10) to yield
a, b; c/ab| [c/a].[c/b)w
2¢1[ C ] = m (5.1.19)
This is the required sum, the basic analogue of Gauss’ theorem. As q — 1,
(5.1.19) reduces to the Gaussian sum

2F1[ (5.1.20)

valid for R(c—a—-Db) > 0.

a, b; 1] _T(OI(c-a-h)
c "~ T(c-al(c-b)

Again, setting ¢c = abzin (5.1.19) and then letting b — 0, we get (5.1.10).
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Exercises 5.1.
5.1.8. Show that
191 i _Z/ 4 - [C[é ?]"". (5.1.21)

(A series

(bs); [aln[(bs)]n

is called an abnormal g-series for A > 0 and is rapidly convergent because of

lal < 1.)
5.1.9. Show that

. . el An(n-1)/2
r%[(ar), a z]:Z[(ar)]nznq
=0

[y s 5.122)
e | Zidnidn e -
5.1.10. Show that
o] an 1
== 5.1.23
g[q]% [dl ( )
5.1.11. Show that
© (-1)"g” 1
Z( )'q = [0 e (5.1.24)

LT @l [-9; qln

5.2. Continued Fractions and Basic Hypergeometric
Functions

We define a finite continued fraction as

a1 =) a @
by + by + bs+ +b,’
It will be called an infinite continued fraction when n — oco. Suppose we want to
express V2 in terms of continued fraction, then we have,

ao + (5.2.1)
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Vi-1evVi-1-1+(va-p2rD_ 1

V2+1 1+4WV2
1 1
=1+ =1+ 1
1+1+ 2+
1+ V2 1+ 2
1
V2=1+ N (5.2.2)
2+
1
2+
) 1
+2+...

It provides fairly a large degree of approximation. Before we go further, we estab-
lish certain results to be used in our analysis. We start with (5.1.18). That is,

a b z| [bl.[aZ]. c/b, z b
2¢1[ c ] = mz 1[ . ] (5.2.3)
Now, applying this transformation on the right side we get,
a by z| [c/b].[bZ]. abz/c, b; c/b
2¢1[ c ] - W 2¢1 [ bZ ] (524)

(This is known as Euler’s transformation). Hypergeometric functions and contin-
ued fractions have very intimate relations. We shall illustrate it with the help of a
general example which generalizes scores of results of S. Ramanujan.

Let, for i a non-negative integer

v [ed 1B
i -; [l (5.29)

o [aql’ pa; X] (5.2.6)

Y ] vq
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and

H = i CCRUEL Ay
=0

[Aln[y]nsi
I [aqi Bd'; xq]
[yl vd .

Now,
N [edalBgTn o
FoH== 0 b,

— i [a'qi]n+1 [qu]ml Xn+1
=0 [Aln[y]nsisa

qi+1] N [ﬁqi+1]nxn

— (- ad)a - pe)x Y 1
n=0
or

Fi—Hi == (1 - oq)(1 - Bd)XFi.1.

Now, we use (5.2.4) to transform F; and H; to get,

e _ Bl S BAILoAXd /yInG)
DM & Bl

and

Hi =

[aln[yInsisa

_ Bl 5 AT LoAXT IR

lolxdle & [dl[Bxa*s

Now (5.2.10) and (5.2.11) lead to

(5.2.7)

(5.2.8)

(5.2.9)

(5.2.10)

(5.2.11)
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_ /Bl [x8 o (=pa) o [ Tnalaxd ™ /y1a(5)" (L - o)

Ho R = bl 2 - 5xa s
/Bl [0 1 (yd) < 1B Tnlaxd ™! ylna (5)"
T blebdle & [dBxgen
or
Hi = (1 - X)Fi.1 = (@Bxq™** = yd)Hip. (5.2.12)

Now, (5.2.9) and (5.2.12) respectively yield

Fi ., (-aod)1-pd)x
AT RF.

(5.2.13)

and

Hi (@Bxq”** — vq)
Fiia =hoxe I:i+l/Hi+l . (5214)
Now, iterating (5.2.13) and (5.2.14), we get,
Fi _,, @—ad)d-Bd)x apxg® - yd
H; 1-x + 1 +
(1 _ aqi+1)(1 _Iqu+1)X a,IBXqu+3 _ 7C|i+1
1-x + 1 +
(1 _ aqi+2)(1 _Iqu+2)X a’,BXC]Zi+5 _ 7C|i+2
1-x + 1+ -
This provides an infinite family of continued fraction representation for the ratio
Fi/H;. Taking i = 0, we get

2¢1[a/, k X] /241 [a, k Xq]

(5.2.15)

y y

_q, A-a)A-pB)x apxq-y (1-aq)(l-BAX afxF’ -9

T 1-x + 1 + 1-x + 1 +
2\ pe2 5 .2

(1-aq?)(1-Bg)X afxq rq (5.2.16)
1-x + 1+--.

(5.2.16) includes scores of results due to S. Ramanujan as its special cases.
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Exercises 5.2.

521. Show that
o qn2xn 00 q _
/
; [dlnyn] ; [alnlyn]
1 x y9-y x¢ x°-yq xq

"1+ 1+ 1 + 1+ 1 + I+---

(Putting v = —bq yields a famous result due to Ramanujan).
5.2.2.  Show that

X% e _ i [9; Tn(=X)"
n=0

[-% 0?1 [a?; o?]n
1 x xq+9 XP xP+0* xq* xo+

5.2.3. Show that

[a7. 1 a o+ @ g'+q

5.2.4. Show that

(59 (o)

Z ann2+n/ annZ ~ i ﬁ X_q2 X_q3 xq4
n=0 [dln =0 [aln 1+ 1+ 1+ 1+ 1 +---

5.25. Show that

3 SHPA K i sy N CCy
]’ &4 [dln [ Ple[at; ol

9 ¢ ¢ d

5.2.1. Continued fraction representations

(5.2.17)

(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)

In Section 5.2 we established the continued fraction representations for the ratio
of two ,¢,’s. The success of the method depends on the existence of a suitable
transformation of ,¢; in terms of another ,¢,. In the present case we make use of
a known transformation of a 3¢, in terms of another 3¢,, both the functions having

constant arguments (due to Hall, N.A.)
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a b c ef/abc]
32 e f
_ [al[ef /ab].[ef /ac] e/a, e/f, ef/abc, a (5.2.22)
T [ [flo[ef /abc).,  *T° ef/ab, ef/ac | -
Now, let us define the functions H; and F; as follows:
1 a, bg, cq; ef/abc
Hi = [e]i[f]i3¢2[ ef, fq (5.2.23)
and
1 ag, bq, cq; ef/qgabc
FI - [e]i[f]i3¢2 eq|’ fql . (5224)
Now,
o [bq'ln[cqT(ef /abe)” .
Hi—F = n— n
D L S L
_ i [ad]n-1[bgTn[cq'Tn(ef /abeg)(1 - q)
=0 [aln[€]i+nl fTi+n
_ _ [adln[bqTn.s[cqln.a(ef /abog) ™ i [aaln[b T 1[cqTnea (ef /abeg)™
[q]n[e]n+i+l[f]n+i+1 s [q]n[e]n+i+1[f]n+i+1
= —(1 - bq)(1 - cq')(ef /abcg)Fi,.1.
Thus, _ _
Hi - Fi = —(1 — bg)(1 - cq')(ef /abcq)Fi. 1. (5.2.25)

Now, making use of (5.2.22)to transform H; and F; we get

b - [Alslefd/ablolefd/acl.  [eq/a  fq/a  ef/abc; a
! [e]o[ fle[ef /abC] e efg/ab, efq/ac
and
r. _ [adl<[efd~/ab].[efd/acl.  [eql/a, fql/a, ef/abeg; aq
! [e]..[ f1..[ef /abeq]e 372 efg~l/ab, efq'/ac

(5.2.26)
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Thus,

Hi—(1 — a)(1 — ef /abca) Fi.q
_ [al.[efd/ab].[efq /ac].
~ [el«[fl.[ef/abc].
x {[ef /abc], - qn[ef/abcq]n}
_ [al.[efd /ab].[efq /ac].
~ [el«[fl.[ef/abc.
o i [eq /ala[fd /al.[ef /abc],.a"
£ [qln-1[efq'/ab]n[efq /ac]y
_ [al.[efd /ab].[efq /ac].
e[ fle[ef /abc]e
x i [ecli/a]n+l[fqi/a]n+l[ef /abc]naml
4 [dla[efq'/ab]n.a[efd/aclna

= a(l-eq/a)(1 - fq/a)Hi.1.

Hence,

Hi — (1 - a)(1 - ef /abcg)Fi.1 = a(l — eq'/a)(1 - fq'/a)Hi.

Now, (5.2.25) and (5.2.27), respectively, yield,

(1 -bg)(1 - cq)ef

Fi-Hi=1
T Y T ahogH [P

and

Hio o a(l - eq/a)(1 - fq/a)
F, (-3l -ef/jabog) + Fro/Ho

(5.2.27)

(5.2.28)

(5.2.29)
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Now, iterating with the help of (5.2.28) and (5.2.29) we get, for i=0,

agq, b, c; ef/abcq
HO _ 3¢2 e f
Fo 3¢2[a, 2 ]E: ef /abc
_ 4, M1-bA-c)al -e/a)l - f/a) (1~ ba)(l - cg)
u o+ 1+ u +
, 1 —eq/a)(1 - fa/a) n(L - be?)(1 - cf)
1+ u +
a2 _ f2
Laad eql/aJ)r('ln fg°/a) (5.2.30)

where,

n=ef/abcqg and = (1a)(1—17)---.

(5.2.30) includes scores of results as its special cases.
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5.3. Ramanujan’sTheoriesof Thetaand Elliptic
Functions-1V

[This section is based on the lectures of Professor S. Bhargava of the Department of Mathemat-
ics, University of Mysore, Manasa Gangotri, Mysore 570 006, India]

5.3.0. Introduction

The present lectures are aimed at number theoretic applications. The lectures are
a sequel to earlier lectures delivered by the author in June-July 2000, March-April
2005 SERC Schools, vide publications 31 and 32 of Centre for Mathematical Sci-
ences, Trivandrum and Pala Campuses respectively and lecture notes by the author
for March-April 2006 SERC Schools, vide publications 33 of the Centre.

5.3.1. Partition functions

We will open up this section with the definition of a partition.
Definition 5.3.1. If nis a positive integer, let p(n) denote the number of un-
restricted representations of n as a sum of positive integers, where representations

with different orders of the same summands are not regarded as distinct. We call
p(n) the partition function.

Exercise 5.3.1. Write down all the partitions of 4,5 and 6 and show that p(4) = 5,
p(5) = 7 and p(6) = 11.

Theorem 5.3.1. (The generating function for p(n))

The generating function for p(n) is given by

(o)

N 1
2P’ = o

n=0

where (4, Qoo = (1 - q)(L =) --- (1 = g") - - - and p(0) = 1 by convention.

Proof 5.3.1. It is sufficient to observe that the factor
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1S
T k:Zq“‘ for |g <1
-q 3

generates the number of k’s that appear in a particular partition of n. Each partition
of n appears once and only once on the right side of the identity of the statement of
the theorem.

Exercise 5.3.2. Show that pq(n), the number of partitions of n into distinct parts,
has as its generating function

3 pa(n)a” = (G @)
n=0
where
(aq ) =(1-ag(l—agd)---(L-aq")---

Theorem 5.3.2. The number of partitions of a positive integer n into distinct
parts equals the number of partitions of n into odd parts, denoted by po(n).

Proof 5.3.2. We have, from the exercise above,
D P = (-0 ).
n=0

It is easy to see that

P (¢ e
O Caa. = @D (G Peo

(i)) " po(n)q =
n=0

1
(0 0o

Equating coefficients of like powers of g" we have proved the theorem.

Exercise5.3.3. Show that pg(6) = 4 by writing down the relevant partitions. Show
also that po(6) = 4 by writing down the relevant partitions.
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Remark 5.3.1. Hardy and Ramanujan (1918) showed that, as n — oo,

() ~ ——exp| 7/ 2
~ T — 1,
4n+3 3
that is, the ratio of the two sides tends to 1 as n tends to co. Proof is beyond the

scope of these lectures.

Definition 5.3.2. Given positive integers n and k, let ry(n) denote the number
of representations of n as a sum of k squares, where representations with different
orders and different signs are counted as distinct. Conventionally, r(0) = 1.

Exercise 5.3.4. Write down all representations relevant to r,(2) and thereby show
that r,(2) = 4. Similarly, show that r,(9) = 4 and r,(7) = 0.

Definition 5.3.3. Given a positive integer n the numbers n?,n(n + 1)/2 and
n(3n— 1)/2 are respectively called square, triangular and pentagonal numbers.

Exercise 5.3.5. Draw pictures to justify the terminology of Definition 5.3.3.

Hint: Use the corners of a square to represent 22 = 4. Then extend two of the sides
of the square to draw a bigger square. Consider the three new corners and the two
midpoints of the other two sides of the new square. They addupto4+3+2 = 9.
Similarly, work with a triangle and a pentagon.

Exercise5.3.6. Show that

@) = ) nma” with g(@) = > o

n=0 N=—00
AOE Z t(N)q" with y(q) = Z q
n=0 n=0

where ry(n) is the number of representations of n as sum of k squares (already
defined above) and t,(n) is the number of representations of n into k triangular
numbers. (With the usual convention that representations with different order are
counted as distinct, for example, to(7) = 2,t,(16) = 4.)
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Exercise 5.3.7. Write down the theta function which generates pentagonal num-
bers. Which theta functions generate the square numbers, the triangular numbers?

Exercise 5.3.8. Show that

p) = > (1) p(n - wy)
O<wj<n

Gi- l)

where w; = 8 00 < j < oo,

Exercise 5.3.9. If o-(n) = 3, d where the summation is taken over all divisors d of
n > 1, show that

H

n—

np(n) = » p(j)o(n—j).

n
o

Theorem 5.3.3. We have
(-1)), if n=j(3j+1)/2
De(n) — Do(n) =
() = Do) {0, otherwise,
where D¢(n) denotes the number of partitions of n into an even number of distinct
partsand Dy(n) denotes the number of partitions of ninto an odd number of distinct
parts.

Remark 5.3.2. The above theorem is a combinatorial version of Euler’s pentagonal
number theorem, namely,

i (-1)"q"" "2 = (q; O
N=—o00
Theorem 5.3.4. (Ramanujan’s congruence). For each nonnegative integer n,
p(5n + 4) = 0 (mod 5).

Proof 5.3.4. (Ramanujan):
We have

(59

5. ~5
(0% &) Y P(M)G™? = (?q 3))“’ q(a; 0%, (?qf g)z,"". (5.3.1)
m=0 L 1 Ao
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Now, by the binomial theorem,

(@ 92 = (9 o°)(mod 5),

or,
(@ ) _
@5 - 1(mod 5). (5.3.2)
Now, (5.3.1) and (5.3.2) give
A % = (@ @) Y p(M)G™(mod 5). (5.3.3)
m=0

Thus, from (5.3.3), to show that the p(5n+4) = 0 (mod 5), it is enough to show that
the coefficients of g°™* on the left side of (5.3.3) are multiples of 5. Now, we have

q(a; Q)% = a(q; Q)wo(a; )3,

q Z (~1)igi@i+D/2 Z(_l)k(2k+ 1)gfkrv/2
' k=0

—00

=
DDk + g (5.3.4)

j=—00 k=0

But,
2(j + 1%+ (2k + 1) = 8{1 + %j(sj +1)+ %k(k+ 1)} -10j>-5.  (5.3.5)

Since 2(j + 1) = 0,2 or 3 (mod 5) and (2k + 1)?> = 0,1 or 4 (mod 5) and hence
the left side of (5.3.5) is = 0 (mod 5), iff 2(j + 1)2 = 0 (mod 5) and (2k + 1)> = 0
(mod 5) individually. In particular, 2k + 1 = 0 (mod 5) and hence, by (5.3.4), the
coefficient of g®™° n > 0 that is q(q; )% is a multiple of 5. The coefficient of g° on
the right side of (5.3.3) is also a multiple of 5. This proves the theorem.

Remark 5.3.3. There are several other theorems such as Theorem (5.3.4). See
Berndt (2006) for this and for an exposition of implications of Ramanujan’s works
within Ramanujan’s repertoire.
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5.3.2. Sum of squares
We have already seen in our earlier lectures that, for each positive integer n,
r2(n) = 4(dy4(n) — dz4(n))

where d;(n) denotes the number of positive divisors d of nsuch thatd = j (mod k).

Theorem 5.3.5. (Sum of Four Squares): For each positive integer n, we have

ra(n)=8>d

where the summation is taken over all divisorsd of n such that d is not divisible by
4,

Proof 5.3.5.  We have the 1¢1- Summation of Ramanujan
Z (@ _ (0@ @)
(b)n CNONONCG .

In this, first replace q by ¢? and then put z = €/, a = -1 and b = —g? where
6 is real. Here, (@) = 1, (@, = 1 -a)(@ -ag)---(1 - ag™*),n > 0 and
@.=01-a@-ag)---(1-agq")---, as usual.

(5.3.6)

Briefly, we get,

(=L, nin q"cosng
Z (=05 0P)n CRED 1+4Z 1+

N=—o00
_ (—qt_%"’, qz)oo(—q_e‘"’: e )2
(Ge'; 0P)eo (A7 OP)eo(— 0P P),
(Here, as usual (;09)o = 1, (&gh=(1-a(1-ag)---(1 -aqg"),n > 0 and
@ = (1-3a)(l-ag)---(1 —ag)---). Changing 6 to = — 6 in (5.3.7) and
multiplying the resulting identity with (5.3.7) we get

a2 - " cosng (—g)" cos né
¢*( q)-{1+4; 1+q2n}{ Z |

Integrating both sides with respect to 6 over [-n, ] we have

(5.3.7)
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- 1+82(1 Ca 1+821 ya

This is simply the analytic version of the theorem.

Exercise 5.3.10. Work out the series manipulation in detail.

Remark 5.3.4. For elementary proofs of theorem similar to the one above, that is
regarding sums of six squares, eight squares, sums of triangular number etc., see
Berndt (2006).

Acknowledgment: The author thanks Bruce C. Berndt from whose book “Num-
ber Theory in the Spirit of Ramanujan” (STM Library, Volume 34, American Math-
ematical Society, 2006) the above two topics have been extracted.
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