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CHAPTER 7

SPECIAL FUNCTIONS OF MATRIX ARGUMENT

[This Chapter is based on the lectures of Professor A.M. Mathai of McGill University,
Canada (Director of the 3rd SERC 5c/i00[).]

7.0. Introduction

Real scalar functions of matrix argument, when the matrazesreal, will be
dealt with. It is dfficult to develop a theory of functions of matrix argument for
general matrices. LeX = (x;j),i = 1---,mandj = 1,--- ,n be anm x n matrix
where thex;'s are real elements. It is assumed that the readers haveatiie b
knowledge of matrices and determinants. The followingd&ac notations will be
used here. A prime denotes the transpo§e= transpose ok, |(.)| denotes the
determinant of (.). The same notation will be used for thehlte value also. tiX)
denotes the trace of, tr(X) = sum of the eigenvalues of. A real symmetric
positive definiteX will be denoted byX = X’ > 0. Then0< X = X' < | = X =
X’ > 0andl —X > 0. Further, K will denote the wedge product or skew symmetric
product of the dferentials o;;’s.

7.1. Wedge Product and Jacobians

Definition 7.1.1.  Wedge product or skew symmetric product of diferentials.

Let x andy be real scalar variables withxddy denoting the dterentials. Then

dx A dy = —dy A dx (7.1.1)
whereA denotes the wedge product or skew symmetric product.

From the definition itself it is clear thatxdn dx = 0. As a consequence, we
have the following interesting result: Lgt = fi(Xy, %) andy, = fo(Xq, Xo) be
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228 7. SPECIAL FUNCTIONS OF MATRIX ARGUMENT

two functions of the real scalar variablesandx,. Then the diferentials iny; and
y, are given by the standard formulae, where for examﬁjedenotes the partial
derivative off with respect to,

ot o
dy]_ = 8X1dX1+aX2dX2
and
ot of
dyz = adexl-i- adeXZ. (712)

Let us take the wedge product af;cand dy,.

dyy Ady, = [%dxl ; 3—)de2] A [g—del ; g—dez
= g—zg—del A dxq + g—zg—del A dXo
+ g—zg—zdxz A dxq + g—zg—dez A dXo
= [g—zg—z - 3—22—2] dxy A dXo (7.1.3)

since &y A dx; =0, dxo A dx, =0, dxo A dx; = —dx; A dX,. But

ohof, ofiof, |5 3¢ :|(3_f‘)| (7.1.4)
0X1 0% 0% 0% S_Z g—z an

. . Of;
= determinant of the Jacobian mat(»a?')
j
and this determinant is called théacobian of the transformation ofxY, x,) going
to (y1,y2). Then
dyl A dyz =Jdxg Adxy, J= |(%)|
(9Xj

This property holds in general. Lgf = fj(X1,...., %), ] = 1,...,kbek scalar func-
tions of the real scalar variables ...., Xc. Consider the matrix of partial derivatives
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0—;), i=1..,kj=1.,k thatis, thei j)th element or the-th row, j-th col-

umn element in this matrix is the partial derivativepfwith respect tox;. The

determinant of this matrix is the Jacobidr: |(§—Z})|. Then

dys Adys A .. Ady = JdXg AdX AL A DX (7.1.5)
If the transformationXa, ..., %) to (y1, ..., yk) is one-to-one thef| # 0. In this case

1
dxqg A ... AdX = jdyl A ... A dyy. (7.1.6)
If X = (X;) andmx nthen

dX = dxgg A ... AdXgn A dXor A o ADXon A oo A DXy A oo A DX
If X =X, that is symmetric an@ x p, then

dX = dX]_l A dX21 A dX22 AL A prl AL A prp
the wedge product of the(p + 1)/2 differentials inX.

Example 7.1.1. Let X andY be p x 1 vectors of real scalar variables, functionally
independent, and lef = AX, |Al # 0, whereA = (g;j) is a matrix of constants (free of the
elements inX andY). Evaluate the Jacobian of this transformation.

Solution:
n a1 Q2 - Qip X1
Vo] |eaxe| o E e
yp ’ ’ o e ’ .
Q1 8p2 8pp IL Xp
Yi = Xy + ..+ qpXp, i =1, p.
Oy (ayi)
Hence,
dY = |AldX.

Thatis,Y andX, px 1,Ais px p,|Al # 0, Ais a constant matrix, then

Y = AX, |Al # 0= dY = |AdX. (7.1.7)
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Example 7.1.2. Let X andY bemx n and letA,mx mandB, n x n, be nonsingular
constant matrices. Then show that

Y = AXB = dY = |A"|BMdX. (7.1.8)

Solution: Let Z = AX = (AXW, AX@ AXM) where X®, ..., X" are the
columns ofX. Then the Jacobian matrix faf going toY is of the form

8 A O .. O

=t 1 =A== (7.1.9)
00 . A OO0 .. A
whereO denotes a null matrix and; is the Jacobian for the transformation Xf
going toZ or dZ = |A"dX. Now, consider the transformation

zZWB
Y=2zB=| :
Zmp

wherez®, ..., Z™ are the rows of. The Jacobian matrix is of the form,
A e B = |B™ = dY = |B|"dZ.
00 -.-.-B

Then

Y =AXB,|A £0,|B|£0,Y,mxn X, mxn,= dY = [A"BMX.  (7.1.10)

Example 7.1.3. Let X be p x p, symmetric positive definite and [&t= (t;;) be a lower
triangular matrix. Consider the transformation

X=TT".

Obtain the conditions for this transformation to be on@te- and then evaluate the Jaco-
bian.
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Solution:

X11 X12 ... Xip
X=0M)=] : : .o
Xp1 Xp2 - Xpp
with x;; = x; foralli andj, X = X’ > 0. WhenX is positive definite, that is{ > 0
thenx;; >0, ] =1, ..., palso.

tl]_ O eee O tl]_ tzl eee tpl
TT’ _ t21 t22 eee O O t22 eee tpz _ X N

X121 = t2, = ti; = £+/Xz. This can be made unique if we impose the condition
t1; > 0. Note thatx;, = t13t5; and this means that; is unique ift;; > 0. Continuing
like this, we see that for the transformation to be unique guficient thatt;; >
0,j=1,.., p. Now, observe that,

_ 12 _ {2 2 _ 12 2
Xll — tll, X22 — t21 + t22, ey pr — tpl + ...+ tpp

andXpp = tigtog, ..., Xip = t]_]_tpl, and so on.

OX OX oX
oo 2y, =2 =0,..,—2 =0,
8’(11 at21 atpl

0X12 _ ale

6t21 - 115 ---» atpl — 1,

OX OX: OX:

T2 oty 2220, , 22 =0,
ot Otay Otp

and so on. Taking the;'s in the orderx;i, Xiz, - - - , X1p, X22, =+ , Xop, = - - , Xpp aNd
the t;;’s in the ordertsy, tr1, toy, - - -, typ We have the Jacobian matrix a triangular
matrix with the diagonal elements as follovig; is repeate times,t,; is repeated

p — 1 times and so on, and finalty, appearing once. The number 2 is appearing
a total of p times. Hence the determinant is the product of the diagdeatents,
giving,

p4+p-1
2pt11t22 e tpp-
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Therefore, forX = X" >0, T = (t;), t;j=0,i <, t;; >0,j=1,--- pwe have

p
X=TT =dX = zp{]—[ tjpj”"} dT. (7.1.11)
j=1

The transformation in (7.1.11) is a nonlinear transfororatwhereas in (7.1.10)
itis a general linear transformation involvinan functionally independent rea;’s.
If Xis px pand symmetric then there are only-2 + --- + p = p(p + 1)/2 func-
tionally independent elements X because, herg; = x; for all i and j. Let
Y=Y = AXA, X =X, |Al # 0. Then we can obtain the following result:

Y = AXA, X = X', |Al # 0,= dY = |AIP*1dX. (7.1.12)

This result can be proved by using the fact that a nonsinguoirix such a#\ can
be written as a product of elementary matrices in the form

A = E]_Ez tee Ek
whereEy, - - - , Ex are elementary matrices. Then

Y = AXA = E;E;,-- - ExXE; - - - E;.
Let Yy = ExXE[, Vi1 = Ex1YkE,_;, and so on. Evaluate the Jacobians in these
transformations to obtain the resultin (7.1.12).
For various types of matrix transformations and the assetidacobians see
Mathai (1997). We will need a few more Jacobians for our dismn. These are
listed below without proofs.

Y=XL4X#0=dY = |X|?"forageneraX
IX|~P*D for X = X', (7.1.13)
Let X be ap x n,n > p, matrix of rankp and letX = TU; whereT ispx p
lower triangular with distinct nonzero diagonal elements &7 a uniquen x p

semiorthonormal matrixJ;U; = |, all are of functionally independent variables.
Then

p
X=TU; :>dX:{l_[|tjj|”‘J}dT/\dU1 (7.1.14)

=1
where
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Pr%

fdu1 _ 2 (7.1.15)
o (3)

(see page 236 fdry(-) ). Combining (7.1.15), (7.1.14) and (7.1.11) we have the

following result: LetX be ap x n, n > p matrix of full rankp. LetS = XX’ > 0.

Then

np
T2 n_p+

S22 ds. (7.1.16)
Ip(3)

Exercises 7.1.

dX =

7.1.1 LetX = (x;) bemxnwith x;’s functionally independent. Let A be amxm
nonsingular constant matrix. Then show that

Y = AX = dY = |JA"dX.

7.1.2 LetX be as defined in Exercise 7.1.1. [Rebe an x n nonsingular constant
matrix. Then show that

Y = XB = dY = |B|"dX.
7.1.3 LetX = —X ap x p skew symmetric matrix of functionally independent
real variables. Lef be a nonsingular constant matrix. Then show that
Y = AXA = dY = |APidX. (7.1.17)
7.1.4 LetX be ap x p skew symmetric nonsingular matrix. Then show that
Y = X1 = dY = X7 DdX. (7.1.18)

7.15 LetX =X > 0bepxp. LetT = (t;) be an upper triangular matrix with
positive diagonal elements. Then show that

p .
X=TT = dX = zp{ﬂtj!j} dT. (7.1.19)

=1
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7.1.6 Letxy,---,Xp be real scalar variables. Lgt = Xi + - -+ + Xp, y2 = X1 X +
X1X3 + - - - Xp-1Xp (SUM of products taken two at atime); , yx = X; - - - Xc. Then for
X;>0,j=1---,kshow that

-1 p
dyl/\---/\dyk:{l—[ [ ] —Xj|}dX1/\---/\pr. (7.1.20)
i=1 j=i+l
7.1.7. Letxy,---,Xp be real scalar variables. Let
X1 = rsing;
Xj = [rCcosH;Ccosb,---coshj_1sing, j=2,3,---,p-1
Xp =T C0Ssf;,c0sb; - - - COS@p_]_
forr>0,-3<6;<%,j=1---,p—2,—-m <6, 1 <n Then show that

p-1
dxg A--- Adxp =Pt {l_[ | cosej|p‘j‘1} dr AdOy A+ AdBpg. (7.1.21)
j=1

7.1.8 LetX = % whereX andT are p x p lower triangular or upper triangular
matrices of functionally independent real variables wibisiive diagonal elements.

Then show that
dX = (p - 1)[T|PP+D/2gT. (7.1.22)

7.1.9 For real symmetric positive definite matricésandY show that

t
Iim|l - —

t—oo

lim

t—oo

-t
| + XY‘ — e—tr(XY) —
t

(7.1.23)

7.1.10. Let X = (%;), W = (wij) be lower triangulamp x p matrices of distinct
real variables withx;; > O,w;; > 0,j = 1,---,p, Zi‘(zle?k =1j=1---,p. Let
D =diag@,- - ,4p),4;>0,j=1,---,p, real and distinct where diagy, - - - , 1)
denotes a diagonal matrix with diagonal elemetits- - , 1,. Show that
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X = DW = dX = {]_[ Pl —1} dD A dW. (7.1.24)

7.2. Real Matrix-variate Gamma and Related Func-
tions

In the real scalar case the integral representation for argafnction is the
following:

I(a) = fo " T R(a) > 0. (7.2.1)

Let X be ap x p real symmetric positive definite matrix and consider thegnal

[p(a) = fx y 0|X|“-"%le-”(x>o|x (7.2.2)

where, when g1l the equation (7.2_.2) reduces to (7.2.1). We will evalu@t2.p)
with the help of the Jacobian in (7.1.11). let= (t;;) be a lower triangular matrix
with positive diagonal elements. Put

p

X=TT = dX = ZP{ntﬂ”‘j}dT, ITT'| = Ht”,

j=1
tr(X) = tr(TT') = t2, + (5, + t5,) + -+~ + (tf)1 C+ tzp)

fT TT e ”(T”{zp]—[tp*l J}
{]—[I ”dtu}{l_[f 2(2)" e udt”}

i>]

Then,

Fp(a)

sincet;; > 0 by definition and t;,i # j could vary from—co to co subject to the
condition thafT T’ is positive definite. But

0 « -1 _ -1
f etidt; = v andf 2(2)" e et = F(“ - JT)
—o0 0
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for R(a) > % ji=1-,p= KRa) > p; Note that mHI>J there are 1+ 2 +
-+ p-1=p(p-1)/2 factors and hence the final result is the following:

Definition 7.2.1.  Real Matrix-variate gamma function.

(p-1)
Ip(e) = nte

(a - %) y -F(a - pT) R(0) > 2 p-1 (7.2.3)

We will call I'y(@) the real matrix-variate gamma. Observe thatfos 1, I'y(@)
reduces td'(a).

7.2.1. Matrix-variate real gamma density

With the help of (7.2.2) we can create the real matrix-varggmma density as
follows, where X is g x p real symmetric positive definite matrix:

p(fY)
0, elsewhere .

If another parameter matrix is to be introduced then we albdagamma density
with parametersa, B), B = B’ > 0, as follows:

1x1” b ~tr(X) p 1
F(X) = { e X=X >0, R(e) > (7.2.4)

Tp(@) 2 (7.2.5)

B | |a—’i1 e"@) X =X >0,B=B >0,R(e) > &2
f1(X) =
0, elsewhere

As in the scalar case, two matrix random variables X and Y aiekte be indepen-
dently distributed if the joint density of X and Y is the pradwf their marginal den-
sities. We will examine the densities of some functions dejmendently distributed
matrix random variables. To this end we will introduce a fearenfunctions.

Definition 7.2.2. A real matrix-variate beta function, denoted By(a, 8), is de-
fined as

Fp(a)rp(ﬁ) 1

Bp(a.8) = —— T(@+f) R(a) > Wﬁ) : (7.2.6)
The quantity in (7.2.6), analogous to the scalar caséd)ds the real matrix-variate
beta function. Let us try to obtain an integral represeatafor the real matrix-
variate beta function of (7.2.6). Consider
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rar® = | [ e eroa
X=X'>0

f |Y|ﬁ-"%le-“mdv]
Y=Y'>0
where both X and Y ar@ x p matrices.

= f f X5 | Y5 e T dX A dY,

PutU = X + Y for a fixed X. Then

X

Y=U-X=[Y]=|U-X=|UJl -UzZXU"Z

where, for conveniencd)? is the symmetric positive definite square rootldf
Observe that when two matrices A and B are nonsingular wh&eaid BA are
defined, even if they do not commute,

[l — AB| = || — BA|
andifA=A >0andB =B > 0then

Il — AB| = || — AZBAZ| = || — B2AB?|.
Now,
To(@)p(8) = f f UP~2 X2 |l — U=2XU-3 P~ et Udu A dX.
U JX

LetZ = U~3XU"% for fixed U. Then &K = |U|*ZdU by using (7.1.12). Now,

(@) p(B) = f|z|‘l—p%l|| _ Zlﬁ_p%lef |U|a+ﬁ—p%1e—tr(U)du.
z U=U’>0
Evaluation of theJ-integral by using (7.2.2) yieldSy(a + ). Then we have

Bp(a, B) = "(“) "(ﬁ) f [zl N - ZpF oz

Since the integral has to remain non-negatlve we lave Z' > 0,1 - Z > 0.
Therefore, one representation of a real matrix-variata fagtiction is the following,
which is also called the type-1 beta integral.
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p

+1 +1 - 1 - 1
Bp(a,ﬁ):foz_z I|Z|a-"7|| ~ZP7 dZ, R(a) > > ,9&(3)>'OT (7.2.7)

By making the transformatio = | — Z note thate andg can be interchanged in
the integral which also shows thBf(a, 8) = Bp(B, @) in the integral representation
also.

Let us make the following transformation in (7.2.7).

W=(-20%2(1-2 ¢ sW=@Z - swWi=z"|
= WP DdW = (2] P DdZ = dZ = |I + WP Ddw,

Under this transformation the integral in (7.2.7) beconmesfollowing: Observe
that

1Z] = WL+ WIS 1 =2Z) = |1+ W™

Bp(a,B) = f W2 |1+ W@ dw, (7.2.8)
W=W'>0
for R(a) > &2, R(B) > &*.

The representation in (7.2.8) is known as tiige-2 integral for a real matrix-variate
beta function. With the transformatian = W-! the parameters andg in (7.2.8)
will be interchanged. With the help of the type-1 and typ&t2gral representations
one can define the type-1 and type-2 beta densities in thenagail-variate case.

Definition 7.2.3. Real matrix-variate type-1 beta density for the p x p real
symmetric positive definite matrix X such thatX =X >0, | - X > 0.

1 a_le _ ﬁ_hl _ _ , p;l p;l
fz(X):{Bp(a’ﬁ)Dq 2 “ X| z =0< X=X < I, %(a’)> 5> %(ﬁ)> ,

0, elsewhere.
(7.2.9)

Definition 7.2.4.  Real matrix-variate type-2 beta density for the p x p real
symmetric matrix X.
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Ip(e+B) a-B —(a+B) — Y
OB X[ 1+ X, X = X > 0,

fa(X) = R(a) > B, RE) > &2 (7.2.10)
0, elsewhere.

Example 7.2.1. LetX;, X, be px pmatrix random variables, independently distributed as

(7.2.4) with parameterg; anda, respectively. Let = X3+Xo,V = (X1 + XZ)‘%Xl(Xl + XZ)‘%,
_1 _1

W = X, ?X1 X, ?. Evaluate the densities &f, V andW.

Solutions:  The joint density oiX; andX,, denoted byf (Xy, X5), is available as the
product of the marginal densities due to independence. i$hat

X |21~ el |x2|az—p%1 e tr(Xi+X2)
[p(@1)lp(a2)

Ray) > P21 R(wy) > p; ! (7.2.11)

f(Xl,Xz): ,X1:X1>O, XZZXé>O,

U=X.+ X = X = U = Xy = JUJIl = U~ 2%, U3,
Then the joint density ofY, U;) = (X1 + Xz, X1), the Jacobian is unity, is available
as

1 p+l p+l 1 1 p+l
fi(U,Uy) = —————|Uy|* " Z U2 2 || - U 2U,U 2|2z gV,
1(U,Uy) Fp(al)rp(a2)| 1l U] | U2
PutU, = U-3U;U-% = dU; = |U|Z dU,. Then the joint density ot andU, = V
is available as the following:

1 p+1 p+1 p+l
f U, VY= ——— U a/1+az—Te—tl’(U) Ve - Ve
ALY rp(al)rp(a2)| | M | |

Sincef,(U, V) is a product of two functions df andV, U = U’ >0,V =V’ > Q,
| —V > 0 we see thatl andV are independently distributed. The densitiedJof
andV, denoted by;(U), g»(V) are the following:

g1(U) = cluter e y =y’ > 0
and . .
go(V) = VI T |l V|22 V=V >0, | -V >0,



240 7. SPECIAL FUNCTIONS OF MATRIX ARGUMENT

wherec; andc, are the normalizing constants. But from the gamma densitly an
type-1 beta density note that

1 Fp(al + Ckz)
Cit=——, C=———"" R >0, R > 0.
' rp(al + ) ? Fp(al)rp(QZ) (@) (a2)

HenceU is gamma distributed with the parametet ¢ a,) and V is type-1 beta
distributed with the parametets anda, and further that U and V are independently

distributed. For obtaining the density\of = xjxlxj start with (7.2.11). Change

(Xg, X3) to (X1, W) for fixed X,. Then &K, = |X2|p%1dW. The joint density ofX, and
W, denoted byf, x,(W, X,), is the following, observing that

X3 (1 + 3G %G )X
X2 (1 + W)X2] = tr{(1 + W)X]
tr[(1 + W)DX(1 + W)?]

by using the fact that tAB) = tr(BA) for any two matrices where AB and BA are
defined.

tr(Xl + Xz)

1 p+1 p+1 1 1
f W X - W(l]_—T X (1/1+a/2—Te—tr[(|+V\I)?X2(I+V\I)?].
w’XZ( 2) rp(al)rp(a’z) | | | 2|

Hence the marginal density of W, denoteddhyW), is available by integrating out
Xz from f,,, (W X;). That is,

1 p+1

gw(VV) — |W|al—7 f |X2|a1+az—p%1e—tr[(|+VV)%X2(I+VV)%]dX2.
[p(a1)Tp(a2) Xo=X)>0

PutXs = (I + W)2Xy(l + W)2 for fixed W, then & = |1 + W]’z dX,.
Then the integral becomes

. 1 1
f |X2|al+ag—p71 e—tt’[(|+\/\/)2X2(|+\/\/)2]d)(2
Xo=X;>0

= [plaz + a2)|l + W),
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Hence,
e yjoa="2 | g WD, W= W > 0
Ip(a1)l'p(e2) 1 ,1 ’
gu(W) = R(m) > 5, R(a) > 5
0, elsewhere

which is a type-2 beta density with the parametersand a,. Thus, W is real
matrix-variate type-2 beta distributed.

7.3. The Laplace Transform in the Matrix Case

If f(xg,---,X) is a scalar function of the real scalar variables - - , X then
the Laplace transform of, with the parameters, - - - , ti, iS given by

Lf(tl,---,tk):f f e (xy L ) )X A A X (7.3.1)
0 0

If f(X) is areal scalar function of thgx p real symmetric positive definite matrix X
then the Laplace transform &fX) should be consistent with (7.3.1). Whin= X’
there are onlyp(p + 1)/2 distinct elements, eitheg;’s,i < j or x;’s,i > j. Hence
what is needed is a linear function of all these variablestd) in the exponent we
should have the linear functidimX;1 + (to1X21 + tooXo2) + - - - + (L1 Xp1 + - - - + tppXpp)-
Even if we take a symmetric matrik = (t;;) = T then the trace of TX,

p
i<j=1

Hence if we take a symmetric matrix of parametgts such that

1'[11 fty o 3t
" _tZl t22 ¢t _th " « % % l . .
:_thpl %tpz e tpp
then

P P
tr(T*X) =X+ -+ tppxpp + Z Z t”X”
i=1 j=Li>]j
Hence the Laplace transform in the matrix case, for real sgimoypositive definite
matrix X, is defined with the parameter matifix.
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Definition 7.3.1.  Laplace transform in the matrix case.
L (T") = f 1T £ (X)X, (7.3.2)
X=X">0
whenever the integral is convergent.

Example 7.3.1. Evaluate the Laplace transform for the two-parameter gaahenaity
in (7.2.5).

Solution:  Here,

B|* - -1
f(X) = 12X e B X = X' > 0,B=B >0, R(a)> 2 (7.3.3)
I'p(@)
Hence the Laplace transform bfis the following:

1Bl
[p(@) Ix=x>0
Note that sincd*, BandX arep x p,
tr(T*X) + tr(BX) = tr[(B + T*)X].
Thus for the integral to converge the exponent has to renasitiye definite. Then

the conditionB + T* > 0 is suficient. Let B + T*)% be the symmetric positive
definite square root d + T*. Then

Le(T*) = X[ Lt e (T X) g tr(BX) g

tr[(B + T)X] = tr[(B + T*)2X(B + T*)?],
(B+T)X(B+T): =Y =dX = |B+ T =dY

and
p+1 p+l
(X" ZdX = |B+ T VY|* =z dY.
Hence,
s |B|a s~ pyja—25E —tr(Y)
L:(T) = B+ T Y|* 7€ dy
Iﬂp(a) Y=Y'>0
=|B*IB+T*™ =]l + B‘lT*l‘“. (7.3.4)

Thus for knownB and arbitraryT *, (7.3.4) will uniquely determine (7.3.3) through
the uniqueness of the inverse Laplace transform. The dondifor the uniqueness
will not be discussed here. For some results in this diracsee Mathai (1993,

1997) and the references therein.
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7.3.1. A convolution property for Laplace transforms

Let f1(X) and f,(X) be two real scalar functions of the real symmetric positive
definite matrix X and let;(T*) andg,(T*) be their Laplace transforms. Let

f3(X) = fo . iX=9)h(S)ds. (7.3.5)

Theng, g is the Laplace transform dg(X).
This result can be established from the definition itself.

Liy(T) = f e "M £5(X)dX
X=X'>0

- f f e T £, (X — S)f,(S)dSdX.
x>0 JS<X

Note that{S < X, X > 0} is also equivalent t¢X > S,S > 0}. Hence we may
interchange the integrals. Then

Le(T) = f f,(S) [ f e (X fl(X—S)dX] ds.
S>0 X>S

PutX-S =Y = X =Y + S and then

f e TS ,(S) [ f e-"(T*Wfl(Y)dY] ds
S>0 Y>0
g2(T")ga(T7).

Example 7.3.2. Using the convolution property for the Laplace transforrd an integral
representation for the real matrix-variate beta functioovsthat

Le,(T7)

Bp(a,8) = [p(a)'p(B)/Tp(a + B).

Solution:  Let us start with the integral representation

Bp(a.8) = fox IIXI"_%II ~ XPF X,

R(a) > pgl,%(ﬁ) > p%l.

Consider the integral
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[ e Fx-up e e [ e
0<U<X

O0<U<X
1 1 p+1
X |l = X 2UX 27 dU

= XA f YIS = VPR A, Y = XBUXCE
0<Y<l
Then

Bp(a, B)IX|* % = f U X — U~ du. (7.3.6)

0<U<X
Take the Laplace transform on both sides to obtain the fatigw
On the left side,

+1 * £1—(a
Bp(a. B) - X|* 5% @ TgX = By(a, BT AT o(a + B).

On the right side we get,

f e tr(T"X) U U2 X — UP- % du | dX
X>0 O<U<X

= Tp(@)pB)T*7@*#) (by the convolution property in (7.3.5).)
Hence
Bp(@,8) = T'p()[p(B)/Tp(a + B).

Example 7.3.3. Leth(T*) be the Laplace transform é{X), thatis,h(T*) = L¢(T*). Then

show that the Laplace transform |m1‘p%ll“p(p%l)f(X) is equivalent to f h(U)du.
U>T*

Solution: From (7.3.3) observe that for symmetric positive definitestant matrix
B the following is an identity.

1 . _1
B[ = IX|? % e TEIGX R(a) > P2 (7.3.7)
rp(a') x>0 2

Then we can replagX ‘p%ll“p(p%l) by an equivalent integral.

lxr”%lrp(p”)z f Y|’ ~% e 0Ny = f e "Ny,
2 Y>0 Y>0
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p+1

E:2) £(X) is given by,

Then the Laplace transform pf ‘p%ll"p( >
f e—tr(T*X) f (X)[ e—tr(YX) dY] dXx
X>0 Y>0

= f f e MM=X £ (X)dYdX. (Put T"+Y=U = U > T
X>0 JY>0

= h(T* +Y)dY = f h(U)du.
Y>0 U>T*

Example 7.3.4. ForX > B,B = B’ > 0 andv > -1 show that the Laplace transform of

X — Bl is [T+ et (MBI + B5Ly

Solution:  Laplace transform giX — B|” with parameter matriX * is given by,

f X - Be"T0dX = e ") f YPe T, Y = X - B
X>B Y>0

— g (BT Fp (V p+ 1) T v+ 21

(by writingy = v + 252 — By fory + B2 > B2 =y > -1,

Exercises 7.3.

7.3.1. By using the process in Example 7.3.3, or otherwise, shotthies_aplace
transform of ["p(p”)lx ‘p%l]”f(X) can be written as

f f f h(Wn)dWl /\ M /\ de
Wi>T* JWo>Wy Wh>Wh_1

whereh(T*) is the Laplace transform of f(X).

7.3.2. Show that the Laplace transform|of" is |T*|~ ”‘TFp(n+ pil ==)forn> -1.

7.3.3. If the p x p real matrix random variabl¥ has a type-1 beta density with
parametersa;, a,) then show that

() U = (I —X)2X(I - X)"2 ~ type-2 betads, ay)
i)V = X1 =1 ~ type-2 betady, 1)
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where “~ " indicates “distributed as”, and the parameters are ginghe brackets.

7.3.4. Ifthe p x p real symmetric positive definite matrix random variable > ha
a type-2 beta density with parametessanda, then show that

() U = X! ~ type-2 betady, 1)
(i) V = (I + X)™t ~ type-1 betad,, 1)
(i) W= (I + X)"2X(1 + X)"2 ~ type-1 betadq, ay).

7.3.5. If the Laplace transform of (X) is g(T*) = Lt-(f(X)), whereX is real
symmetric positive definite anglx p then show that

0
oT*
wherel%l means that first the partial derivatives with respedt;t® for all i and |

are taken, then written in the matrix form and then the detsant is taken, where
T = ().
J

Ag(T7) = L-(IXI"f(X)), A=(-1)°

7.4. Hypergeometric Functions with Matrix Argument

There are essentially three approaches available in #ratitre for defining a
hypergeometric function of matrix argument. One approashtd Bochner (1951)
and Herz (1955) is through Laplace and inverse Laplacefsans. Under this
approach, a hypergeometric function is defined as the fumdatisfying a pair
of integral equations, and explicit forms are available 65 and ;Fo. Another
approach is available from James (1961) and Constantirg8jXfirough a series
form involving zonal polynomials. Theoretically, explidorms are available for
general parameters or for a gengjfa} but due to the diiculty in computing higher
order zonal polynomials, computations are feasible onlgioall values of p and g.
For a detailed discussion of zonal polynomials see Mathravd3t and Hayakawa
(1995). The third approach is due to Mathai (1978, 1993) Withhelp of a gener-
alized matrix transform or M-transform. Through this ddfon a hypergeometric
function is defined as a class of functions satisfying a oeimdéegral equation. This
definition is the one most suited for studying various prtpsrof hypergeometric
functions. The series form is least suited for this purpddkthese definitions are
introduced for symmetric functions in the sense that
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f(X) = f(X) = f(QQ'X) = f(QXQ) = f(D), D = diag@y, ..., Ap).

If Xis p x p and symmetric then there exists an orthonormal matrix Q,isha
QQ =1,QQ = | such thatQ XQ = diag(ly, ..., 1) Where4y, ..., 1, are the eigen-
values of X. Thus, f(X), a scalar function of tipép+ 1)/2 functionally independent
elements in X, is essentially a function of the p variablgs.., 4.

7.4.1. Hypergeometric function through Laplace transform

Let \Fs(ay, ..., &; by, ..., bs; Z) be the hypergeometric function of the matrix ar-
gument Z to be define@, = Z'. Consider the following pair of Laplace and inverse
Laplace transforms.

. . -1 —
r+1Fs(a1, ceey a-h Ca bla ceey bS! —A )l A | ¢

1 +
= e—tl‘(/\U)r Fs(al’ vees B; b17 ceey b51 _U)|U|C_pTldU (741)
['p(€) Ju-u>0

and

_p+l
I'FS+1(a15 coey a-l'a bl5 coey bI’7 C! _/\)| /\ |C 2

I'p(C)

= G L o e Fyay,....a; by, ....bs —Z7H)Z[°dZ (7.4.2)
=X>Xo

whereZ = X +iY, i = V-1, X = X' > 0, andX andY belong to the class of
symmetric matrices with the non-diagonal elements we'n\l;b’ge%. The function
+Fssatisfying (7.4.1) and (7.4.2) can be shown to be uniquengettain conditions
and that function is defined as the hypergeometric functianatrix argument,
according to this definition.

Then by takingFo(; ; —A) = €™ and by using the convolution property of the
Laplace transform and equations (7.4.1) and (7.4.2) onesgsiematically build
up. The Bessel functiogF, for matrix argument is defined by Herz (1955). Thus
we can go fromyFq to 1Fo to oF; to 1F; to ;F; and so on to a generg,,.

Example 7.4.1. Obtain an explicit form forFo from the above definition by using-o
(;;-U) = e V),

Solution:  From (7.4.1)
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1 _pl
I'p(C) Ju-v’ 0|U|C e 90 o(;; ~U)du
p =U >
1 -2t tr(1+A)U] -c
:F(C) UO|U| z g du = |l + A5,
p >
since
oFo(;; -U) = "),
But

4+ A=A+ A7YC
Then from (7.4.1)

1Fo(Cs =A™ = [+ A7Y
which is an explicit representation.

7.4.2. Hypergeometric function through zonal polynomials

Zonal polynomials are certain symmetric functions in thgeavalues of the
p X p matrix Z. They are denoted ik (Z) where K represents the partition of the
positive integer KK = (K, ...,Kp) with k; + --- + k, = k. When Z is 1x 1 then
Ck(2) = Z. Thus,Ck(Z) can be looked upon as a generalizatiorz‘oh the scalar
case. For details see Mathai, Provost and Hayakawa (199%rrhs ofCk (Z) we
have the representation for a

o (r(2)F Ck(Z
oFi(2) =8 = 3, @@y ) 2 (7.4.3)
The binomial expansion will be the following:
- a)kCk(Z Y
1Fo(e;;2) = ;;% =l -2z, (7.4.4)

for0 < Z < |, where,

p P
(@x =] ] (a - 1—21) K = (Koo Ko), Ky + -+ + ko = ko (7.4.5)
Kj

=1
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In terms of zonal polynomials a hypergeometric series isxddfas follows:

, , S (@)k - - - (@p)k Ck(2)
oFo(a, ... ap; by, ... by Z) = Z; BB K (7.4.6)
For (7.4.6) to be defined, none of the denominator factorgusleo zerogq > p,
orqg= p+1andO0< Z < I|. For other details see Constantine (1963). In order to
study properties of a hypergeometric function with the hafli§7.4.6) one needs
the Laplace and inverse Laplace transforms of zonal polyalsmThese are the
following:

f X2~ e TODC, (XT)dX = |Z[*C(TZ ) (e, K) (7.4.7)
X=X">0
where
P : 1
Tp(a, K) = 7PP-1/4 ]_[ ['|a+kj- —] I'p(@)(@)k. (7.4.8)
j=1
— ;f etr(SZ)|Z|—aC (Z)dZ
(2ri)PPD2 g 2y X6 «
+1 .
T K)|S|“‘DTCK(S),| = V-1 (7.4.9)
p B

forZz=X+1Y, X=X >0, XandY are symmetric and the nondiagonal elements
are weighted b)%. If the non-diagonal elements are not weighted then thesigé
in (7.4.9) is to be multiplied by -1/, Further,

Ip(a, K)Ip(B)
[p(a +B,K)

p-1 p-1
5 R@)> 5. (74.10)

fo X X (T - Ce(T)

R(a) >
Example 7.4.2. By using zonal polynomials establish the following results

1N ()
I'p(@I'p(c—a)

x f NP = AT - AXPdA (7.4.10)
O<A<l

2F1(a, b; c; X)
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-1 1
for R(@) > 5=, R(c-a) > &=

Solution:  Expandingl — AX|™ in terms of zonal polynomials and then integrating
term by term the right side reduces to the following:

Il = AX|™ = Z Z(b)KCK('AX) for0 < AX < |

k=0 K k
and

I'p(a, K)I'p(c - @)
I'p(c, K)

f A = AR C(AX)dA = Ce(X)
O<a<l

by using (7.4.10). But
I'p(a, K)I'p(c - @) _ Ip(@0p(c - @) (a)x
Tp(c. K) f© O«
Substituting these back, the right side becomes
Z Z @k Bk Cx(X) _ Fi(a b c X).
=< (O k!

This establishes the result.

Example 7.4.3. Establish the result

Tp(QTp(c—a-b)
I'p(c—a)'p(c—Db)
for R(c-a-b) > &2, R(c-a) > &1, R(c-b) > &2

2F1(ab;cl) =

(7.4.12)

Solution:  In (7.4.11) put X1, combine the last factor on the right with the previous
factor and integrate out with the help of a matrix-variajgeyl beta integral.

Uniqueness of thgF, through zonal polynomials, as given in (7.4.6), is estab-
lished by appealing to the uniqueness of the function defihexligh the Laplace
and inverse Laplace transform pair in (7.4.1) and (7.4r#) ky showing that (7.4.6)
satisfies (7.4.1) and (7.4.2).

The next definition, introduced by Mathai in a series of papsrthrough a
special case of Weyl’s fractional integral.
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7.4.3. Hypergeometric functions through M-transforms

Consider the class gf x p real symmetric definite matrices and the null matrix
O. Any member of this class will be either positive definitenegative definite or
null. Leta be a complex parameter such t#a) > ‘%1 Let f(S) be a scalar
symmetric function in the senggAB) = f(BA) for all A andB whenAB and BA
are defined. Then thil-transform off (S), denoted byM,(f), is defined as

M, (f) = fU_U, 0|U|"—"%11E(U)du (7.4.13)

Some examples of symmetric functions at&®, |I + S} for nonsingularp x p
matricesA andB such that,

gt(AB) — =BA: || 4 AB = || + BAP.

Is it possible to recovef(U), a function ofp(p + 1)/2 elements irlJ = (u;;) or
a function ofp eigenvalues ofJ, that is a function op variables, from\,(t) which
is a function of one parametef? In a normal course the answer is in the negative.
But due to the properties that are seen, it is clear that #vasts a set of diicient
conditions by whichM,,(f) will uniquely determinef(U). It is easy to note that
the class of functions defined through (7.4.13) satisfy @ieqf integral equations
(7.4.1) and (7.4.2) defining the unique hypergeometrictionc

A hypergeometric function throughl-transform is defined as a class of func-
tions, F; satisfying the following equation:

f X~ Fs' (@, ..., ap; by, ..., by, —X)dX
X=X'>0

AT TpO)HIT s Tola = o))
{51 Tp@)HIT5-1 Doy — p))
wherep is an arbitrary parameter such that the gammas exist.

(o) (7.4.14)

Example 7.4.4. Re-establish the result

1 +
Lr(X - B") =T} (v + p%) T 0+ %) g t(TB) (7.4.15)

by usingM-transforms.
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Solution:  We will show that theM-transforms on both sides of (7.4.15) are one
and the same. Taking tiM-transform of the left-side, with respect to the parameter
0, we have,

f |T|P—”%1{LT(|X— B|"}dT = f axa [ f IX — B'e " ™)dXx | dT
T>0 T>0 X>B

— f |T|ﬂ—p%le—tr(TB) [f |Y|ve—tr(TY)dY] dT.
T>0 Y>0

Noting thaty = v + 22 — L the Y-integral givesT|~ = Tp(v + 21). Then the
ting . 2 2 gralg p 2
T-integral gives

1 1 +1

M-transform of the right side gives,

. . . 1 .
M (ightside)= [ 1175 {1y v+ B33 mi 0+ v} ar
T>0

1 1 "
o2 R

The two sides have the same M-transform.

Starting withoFo(; ; X) = €™, we can build up a generaF, by using the
M-transform and the convolution form fdM-transforms, which will be stated next.

7.4.4. A convolution theorem forM-transforms

Let f,(U) andf,(U) be two symmetric scalar functions of the p real symmet-
ric positive definite matrixJ, with M-transformaM, (f1) = g1(o) andM,(f.) = ga(p)
respectively. Let

f3(S) = fu 0 IU[Bf(U2SU?2)f,(U)dU (7.4.16)



7.4. HYPERGEOMETRIC FUNCTIONS WITH MATRIX ARGUMENT 253

then theM-transform offs is given by,

(1) = axeloe(p -+ B33, (7.4.17)

The result can be easily established from the definitiorifibseinterchanging
the integrals.

Example 7.4.5. Show that

I'p(0)

1Fi(@ ¢ -A) = Tp@Tp(c—a) Joau<

|U|a_p%l|| _ UlC—a—p%le_tr(/\U)dU. (7418)

Solution:  We will establish this by showing that both sides have theeshn
transforms. From the definition in (7.4.14) the-transform of the left side with
respect to the parameteis given by the following:

M, (left-side)= |/\|P‘p%1 1F1(a; ¢, —=A)dA
A=A">0
p(a P) I'p(C)
e "|T,@

o s FD—(C)
M, (right-side)= fA>0| rp(a)Fp(C—a)

xf UR5 |1 — U T e Vgy }d/\
O<U<lI

Take,

fl(U) = e—tl'(U) and fZ(U) — |U|a—p%1|| _ Ulc_a_p%l.
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Then

+1 + 1
M) = 1) = [ 0P FedU = ryfo). Rep) > 222

U>0
M,(f2) = g2(p) =f U U~ Ul du
U>0

Tp(@a+p—2)p(c-a
_ pl@+p ) pg ) R(c—a) > p
Ip(c+s—E=

R@+p)>p R{C+p)>p.

Taking f3 in (7.4.16) as the second integral on the right above we have

b iy p(C)} I'p(@-p) i
M, (right S|de)_{ e p(p) T )_ M, (left-side)

Hence the result.

Almost all properties, analogous to the ones in the scake fia hypergeomet-
ric functions, can be established by using the M-transfaramique very easily.
These can then be shown to be unique , if necessary, throeghniljueness of
Laplace and inverse Laplace transform pair. Theories foctians of several ma-
trix arguments, Dirichlet integrals, Dirichlet densitigheir extensions, Appell’s
functions, Lauricella functions, and the like, are avd#ga@hen all these real cases
are also extended to complex cases as well. For details ste@aiM&997). Prob-
lems involving scalar functions of matrix argument, read anmplex cases, are still
being worked out and applied in many areas such as statidistebution theory,
econometrics, quantum mechanics and engineering aree® t8e aim in this brief
note is only to introduce the subject matter, more detailsnet be given here.

Exercises 7.4.

7.4.1. Show that forn = A" > 0 andp x p,
1Fi(@c—A) = "™, Fi(c—a;c; A).

7.4.2. For p x preal symmetric positive definite matricesandv show that
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I'p(c "
1Fi(ac—A) = ¢| A |—(C—pT1 f g tr(v)
Fp(a)rp(c - a) 0<V<A

bl _g_ptl
X|VIEZ|A=V|[T*ZdV.

7.4.3. Show that fore a scalar and\ a p x p matrix with p finite

. 1 . A
im|l + €A ¢ =lim|l + =€ = g A
-0 €—00 €

7.4.4. Show that

. Z . 1
lim ;Fi(a;c;, ——) [im 1F1(—; C; —eZ)
a—oo a e—0 €

oF1(; ¢, =2).

7.4.5. Show that
I'p(C)

—— €D1Z19 + AZ7Y2dZ.
(211) "7 JR@)=X>Xo

1Fi(a;c;—A) =

7.4.6. Show that
SFi(a b;c; X) = |l = X|P,F1(c—a,b;c; —X(l = X)™).
7.4.7. ForR(s) > L1 R(b- 9 > B2, R(c-a- 9 > &2, show that
f XIS |1 = X% ,F 4y (a, b; ¢; X)dX
O<X<l

_ Ip(Op(9)p(b— ) p(c—a-19)
Ip(b)Ip(c—a)p(c—9)

7.4.8. Defining the Bessel functioA (S) with p x p real symmetric positive
definite matrix argument S, as

1 1
AS) = ————oFiGr+ Prs), (7.4.19)
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show that
[0 s A dds = — 20
S>0

1
Tp(r + 5=

1
| A7°1F ((5; r+ p; ; —/\_l).

7.49. If
M(e. i A) = f XI5 |1+ X% e Mg
X=X">0

p-1

R(a) > ,LA=A >0

then show that

. 1 1
f |X+A|Ve‘”(Tx)dX:|A|V+pTlM(pJ2r v 22 ;A%TA%).
X>0

7.4.10. If Whittaker function W is defined as

2P+ 2 F e Dz
Z>0
_uty 3
= IATF TR Wy 1,0, ) (A)
then show that
f X + Bi~5 X — U2 e v gx
xX>U

=|U+ Bqu_%l|M|_(a+q)e%tr[(B_U)M]Fp(zq)
5 1
X W(a—q),(a+q—(p+l))(s), S= (U + B)z M(U + B)Z,
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